Nothing
#' @title Stabilized Inverse Probability of Censoring Weights
#' @description Compute stabilized Inverse Probability of Censoring Weights
#' @name stabilized_ipcw
#' @param identifier Name of the column for unique identifier.
#' @param treatment Time-varying treatment.
#' @param covariates List of time-varying covariates.
#' @param baseline Baseline covariates.
#' @param censor Name of the censoring variable.
#' @param obsdata Observed data in wide format.
#' @return Stabilized Inverse Probability of Censoring Weights
#' @keywords internal
#' @noRd
#' @author Awa Diop, Denis Talbot
#' @note This function requires data in a wide format.
#' @examples
#' obsdata = gendata(n = 1000, format = "wide",include_censor = TRUE,seed = 945)
#' baseline_var <- c("age","sex")
#' covariates <- list(c("hyper2011", "bmi2011"),
#' c("hyper2012", "bmi2012"),c("hyper2013", "bmi2013"))
#' treatment_var <- c("statins2011","statins2012","statins2013")
#' censor_var <- c("censor2011", "censor2012","censor2013")
#' stabilized_weights = stabilized_ipcw(
#' identifier = "id", covariates = covariates, treatment = treatment_var,
#' baseline = baseline_var, censor = censor_var,obsdata = obsdata)
#' summary(stabilized_weights[[1]])
stabilized_ipcw <- function(identifier, treatment, covariates, baseline, censor, obsdata) {
if (!is.data.frame(obsdata)) {
stop("obsdata must be a data frame in wide format")
}
required_args <- c("identifier", "baseline", "covariates", "treatment", "censor", "obsdata")
missing_args <- setdiff(required_args, names(match.call()))
if (length(missing_args) > 0) {
stop(paste(missing_args, collapse = ", "), " not specified")
}
sw_treatment_temp <- matrix(numeric(0), nrow = nrow(obsdata), ncol = length(treatment))
sw_censor_temp <- matrix(numeric(0), nrow = nrow(obsdata), ncol = length(treatment))
for (i in 2:length(treatment)) {
past_treatments <- paste0(treatment[1:(i-1)], collapse = "+")
current_covariates <- paste0(unlist(covariates[1:i]), collapse = "+")
baseline_covariates <- paste0(baseline, collapse = "+")
form_num_treatment <- as.formula(paste(paste0(treatment[i], "~", past_treatments)))
form_num_censor <- as.formula(paste(paste0(censor[i], "~ 1")))
form_denom_treatment <- as.formula(paste(paste0(treatment[i], "~", past_treatments, "+", current_covariates, "+", baseline_covariates)))
form_denom_censor <- as.formula(paste(paste0(censor[i], "~", past_treatments, "+", current_covariates, "+", baseline_covariates)))
fit_num_treatment <- glm(form_num_treatment, family = binomial(link = "logit"), data = obsdata)
fit_num_censor <- glm(form_num_censor, family = binomial(link = "logit"), data = obsdata)
fit_denom_treatment <- glm(form_denom_treatment, family = binomial(link = "logit"), data = obsdata)
fit_denom_censor <- glm(form_denom_censor, family = binomial(link = "logit"), data = obsdata)
ps_treatment <- predict(fit_num_treatment, type = "response")
ps_censor <- predict(fit_num_censor, type = "response")
sw_treatment_temp[, i][obsdata[,censor[i-1]] == 0] <- ((1 - obsdata[, treatment[i]][obsdata[,censor[i-1]] == 0]) * (1 -
ps_treatment[obsdata[,censor[i-1]] == 0])) / (1 - predict(fit_denom_treatment, type = "response")[obsdata[,censor[i-1]] == 0]) +
(obsdata[, treatment[i]][obsdata[,censor[i-1]] == 0] * ps_treatment[obsdata[,censor[i-1]] == 0]) / predict(fit_denom_treatment, type = "response")[obsdata[,censor[i-1]] == 0]
sw_censor_temp[, i][obsdata[,censor[i-1]] == 0] <- ((1 - ps_censor[obsdata[,censor[i-1]] == 0]) / predict(fit_denom_censor, type = "response")[obsdata[,censor[i-1]] == 0])
}
# Calculate stabilized weights for the first time point
# Formulating numerator model for treatment and censoring at t=1
form_num_treatment_t1 <- as.formula(paste0(treatment[1], "~ 1"))
form_num_censor_t1 <- as.formula(paste0(censor[1], "~ 1"))
# Formulating denominator model for treatment and censoring at t=1
# Including only the baseline covariates since it's the first time point
form_denom_treatment_t1 <- as.formula(paste0(treatment[1], "~", paste0(unlist(covariates[1]),collapse = "+"), "+", paste0(baseline, collapse = "+")))
form_denom_censor_t1 <- as.formula(paste0(censor[1], "~", paste0(unlist(covariates[1]),collapse = "+"), "+", paste0(baseline, collapse = "+")))
# Fitting models for numerator at t=1
fit_num_treatment_t1 <- glm(form_num_treatment_t1, family = binomial(link = "logit"), data = obsdata)
fit_num_censor_t1 <- glm(form_num_censor_t1, family = binomial(link = "logit"), data = obsdata)
# Fitting models for denominator at t=1
fit_denom_treatment_t1 <- glm(form_denom_treatment_t1, family = binomial(link = "logit"), data = obsdata)
fit_denom_censor_t1 <- glm(form_denom_censor_t1, family = binomial(link = "logit"), data = obsdata)
# Predicting probabilities for treatment and censoring at t=1
ps_treatment_t1 <- predict(fit_num_treatment_t1, type = "response")
ps_censor_t1 <- predict(fit_num_censor_t1, type = "response")
# Calculating stabilized weights for the first time point
sw_treatment_temp[, 1] <- (obsdata[, treatment[1]] * ps_treatment_t1) / predict(fit_denom_treatment_t1, type = "response")
sw_censor_temp[, 1] <- (1 - ps_censor_t1) / predict(fit_denom_censor_t1, type = "response")
# Compute final stabilized weights
sw_censor_treatment <- sw_treatment_temp * sw_censor_temp
weights <- t(apply(sw_treatment_temp * sw_censor_temp, 1, cumprod))
return(list(weights))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.