R/br.test.R

Defines functions br.test

Documented in br.test

##    file br.test.R part of package trend
##
##    Copyright (C) 2018 Thorsten Pohlert
##
##    This program is free software: you can redistribute it and/or modify
##    it under the terms of the GNU General Public License as published by
##    the Free Software Foundation, either version 3 of the License, or
##    (at your option) any later version.
##
##    This program is distributed in the hope that it will be useful,
##    but WITHOUT ANY WARRANTY; without even the implied warranty of
##    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##    GNU General Public License for more details.
##
##    You should have received a copy of the GNU General Public License
##    along with this program.  If not, see <http://www.gnu.org/licenses/>.
##
##   
#     Changes
#     2017-07-01
#     - initial writing
#
#' @title Buishand Range Test for Change-Point Detection
#' 
#' @description
#' Performes the Buishand range test for change-point detection
#' of a normal variate.
#' 
#' @param x a vector of class "numeric" or a time series object of class "ts"
#' @param m numeric, number of Monte-Carlo replicates, defaults to 20000
#' 
#' @details
#' Let \eqn{X} denote a normal random variate, then the following model
#' with a single shift (change-point) can be proposed:
#'
#' \deqn{
#'   x_i = \left\{
#'       \begin{array}{lcl}
#'        \mu + \epsilon_i, & \qquad & i = 1, \ldots, m \\
#'        \mu + \Delta + \epsilon_i & \qquad & i = m + 1, \ldots, n \\
#'       \end{array} \right.}{%
#'   x[i] = \mu + \epsilon[i] for i = 1, ..., m and x[i] = \mu + \delta
#'   + \epsilon_i for i = m + 1, ..., n}
#'
#' with \eqn{\epsilon \approx N(0,\sigma)}. The null hypothesis \eqn{\Delta = 0}
#' is tested against the alternative \eqn{\Delta \ne 0}{\Delta != 0}.
#' 
#' In the Buishand range test, the rescaled adjusted partial sums
#' are calculated as
#'
#' \deqn{S_k = \sum_{i=1}^k \left(x_i - \hat{x}\right) \qquad (1 \le i \le n)}{%
#' S[k] = \sum (x[i] - xmean)    (1, <= i, <= , n)}
#'
#' The test statistic is calculated as:
#' \deqn{Rb = \left(\max S_k - \min S_k\right) / \sigma}{%
#' Rb = (max S[k] - min S[k]) / \sigma}. 
#'
#' The \code{p.value} is estimated with a Monte Carlo simulation
#' using \code{m} replicates.
#' 
#' Critical values based on \eqn{m = 19999} Monte Carlo simulations
#' are tabulated for \eqn{Rb / \sqrt{n}}{Rb / sqrt(n)}
#' by Buishand (1982).
#' 
#' @return A list with class "htest" and "cptest"
#' \item{data.name}{character string that denotes the input data}
#' \item{p.value}{the p-value}
#' \item{statistic}{the test statistic}
#' \item{null.value}{the null hypothesis}
#' \item{estimates}{the time of the probable change point}
#' \item{alternative}{the alternative hypothesis}
#' \item{method}{character string that denotes the test}
#' \item{data}{numeric vector of Sk for plotting}
#' @note
#'  The current function is for complete observations only.
#' 
#' @references
#' T. A. Buishand (1982), Some Methods for Testing the Homogeneity
#' of Rainfall Records, \emph{Journal of Hydrology} 58, 11--27.
#'
#' G. Verstraeten, J. Poesen, G. Demaree, C. Salles (2006),
#' Long-term (105 years) variability in rain erosivity as derived from 10-min
#' rainfall depth data for Ukkel (Brussels, Belgium):
#' Implications for assessing soil erosion rates.
#' \emph{Journal of Geophysical Research} 111, D22109.
#' 
#' @seealso
#' \code{\link[strucchange]{efp}}
#' \code{\link[strucchange]{sctest.efp}}
#' 
#' @examples
#' data(Nile)
#' (out <- br.test(Nile))
#' plot(out)
#'
#'
#' data(PagesData) ; br.test(PagesData)
#'  
#' @keywords ts univar htest
#' @importFrom stats frequency start ts end is.ts na.fail
#' @useDynLib 'trend', .registration = TRUE
#' 
#' @export
br.test <- function(x, m = 20000){
    if(!is.numeric(x)){
        stop("'x' must be a numeric vector")
    }
    na.fail(x)
    DNAME <- deparse(substitute(x))
    
    xmean <- mean(x)
    n <- length(x)
    k <- 1:n
    Sk <- sapply(k, function(i) sum(x[1:i] - xmean))
    sigma <- sd(x)
    R <- (max(Sk) - min(Sk)) / sigma
    R <- R / sqrt(n)
    Ska <- abs(Sk)
    S <- max(Ska)
    K <- k[Ska == S]

    # standardised value
    Skk <- Sk / sigma
    if (is.ts(x)){
        fr <- frequency(x)
        st <- start(x)
        ed <- end(x)
        Skk <- ts(Sk, start=st, end = ed, frequency= fr)
    }
    
    PVAL <- .Fortran("mcbr",
                     stat = as.double(R),
                     n = as.integer(n),
                     m = as.integer(m),
                     pval = double(1))$pval
  
    names(R) <- "R / sqrt(n)"
    names(K) <- "probable change point at time K"
    attr(Skk, 'nm') <- "Sk**"
    retval <- list(statistic = R,
                   parameter = c(n = n),
                   null.value = c(delta = 0),
                   estimate= K,
                   p.value =  PVAL,
                   data.name= DNAME,
                   alternative="two.sided",
                   data = Skk,
                   method = "Buishand range test")
    class(retval) <- c("htest", "cptest")
    return(retval)
}

Try the trend package in your browser

Any scripts or data that you put into this service are public.

trend documentation built on Oct. 10, 2023, 9:06 a.m.