Nothing
#' Evaluation of forecasts using Murphy curves
#'
#' A Murphy curve visualizes economic utility by displaying the mean elementary
#' scores across all threshold values.
#'
#' @param ref_var A variable in `x` that contains reference forecasts. Specified as the argument `var` in [dplyr::pull()]). Ignored, if the default name is not present in `x`.
#' @param ... Unused.
#' @param ref A numeric vector of reference forecasts. If supplied, overrides `ref_var`. Otherwise, ignored (see `ref_var`) or `dplyr::pull(x, ref_var)`.
#' @inheritParams triptych
#'
#' @return A `triptych_murphy` object, that is a `vctrs_vctr` subclass, and has
#' a length equal to number of forecasting methods supplied in `x`. Each entry
#' is named according to the corresponding forecasting method,
#' and contains a list of named objects:
#' \itemize{
#' \item `estimate`: A data frame with the threshold and corresponding mean score values.
#' \item `region`: Either an empty list, or a data frame of point confidence intervals
#' added by [add_confidence()].
#' \item `x`: The numeric vector of original forecasts.
#' }
#' Access is most convenient through [estimates()], [regions()], and [forecasts()].
#'
#' @seealso Accessors: [estimates()], [regions()], [forecasts()], [observations()]
#'
#' Adding uncertainty quantification: [add_confidence()]
#'
#' Visualization: [plot.triptych_murphy()], [autoplot.triptych_murphy()]
#'
#' @examples
#' data(ex_binary, package = "triptych")
#'
#' mr <- murphy(ex_binary)
#' mr
#'
#' # 1. Choose 4 predictions
#' # 2. Visualize
#' # 3. Adjust the title of the legend
#' mr[c(1, 3, 6, 9)] |>
#' autoplot() +
#' ggplot2::guides(colour = ggplot2::guide_legend("Forecast"))
#'
#' # Build yourself using accessors
#' library(ggplot2)
#' df_est <- estimates(mr[c(1, 3, 6, 9)])
#' ggplot(df_est) +
#' geom_path(aes(x = knot, y = mean_score, col = forecast))
#'
#' @name murphy
NULL
#' @rdname murphy
#' @export
murphy <- function(x, y_var = "y", ref_var = "ref", ..., y = NULL, ref = NULL) {
x <- tibble::as_tibble(x)
if (is.null(y)) {
y_var <- tidyselect::vars_pull(names(x), !!rlang::enquo(y_var))
y <- x[[y_var]]
x <- dplyr::select(x, !y_var)
}
if (is.null(ref)) {
# ref_var must be present in x, if ref_var is user-supplied...
# ...otherwise, it's okay if ref_var is not present in x.
if (!missing(ref_var)) {
ref_var <- tidyselect::vars_pull(names(x), !!rlang::enquo(ref_var))
ref <- x[[ref_var]]
x <- dplyr::select(x, !ref_var)
} else if (ref_var %in% names(x)) {
ref <- x[[ref_var]]
x <- dplyr::select(x, !ref_var)
}
}
y <- vec_cast(y, to = double())
ref <- vec_cast(ref, to = double())
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = new_triptych_murphy(y = y, ref = ref))
}
new_triptych_murphy <- function(x = list(), y = double(), ref = double()) {
new_vctr(x, y = y, ref = ref, class = "triptych_murphy")
}
# formatting
#' @export
format.triptych_murphy <- function(x, ...) {
sprintf("<named list[%i]>", sapply(x, length))
}
#' @export
vec_ptype_abbr.triptych_murphy <- function(x, ..., prefix_named = FALSE, suffix_shape = TRUE) {
"trpt_mur"
}
# coercion
#' @exportS3Method vctrs::vec_ptype2
vec_ptype2.triptych_murphy <- function(x, y, ..., x_arg = "", y_arg = "") {
UseMethod("vec_ptype2.triptych_murphy")
}
#' @export
vec_ptype2.triptych_murphy.triptych_murphy <- function(x, y, ..., x_arg = "", y_arg = "") {
if (!has_compatible_observations(x, y)) {
stop_incompatible_type(
x,
y,
x_arg = x_arg,
y_arg = y_arg,
details = "Observations are not compatible."
)
}
new_triptych_murphy(list(), observations(x), attr(x, "ref"))
}
# casting
#' @param r A reference triptych_murphy object whose attributes are used for casting.
#'
#' @rdname murphy
#' @export
as_murphy <- function(x, r) {
stopifnot(inherits(r, "triptych_murphy"))
x <- tibble::as_tibble(x)
x <- dplyr::mutate_all(x, vec_cast, to = double())
vec_cast(x, to = r)
}
#' @exportS3Method vctrs::vec_cast
vec_cast.triptych_murphy <- function(x, to, ...) {
UseMethod("vec_cast.triptych_murphy")
}
#' @export
vec_cast.triptych_murphy.triptych_murphy <- function(x, to, ..., x_arg = "", to_arg = "") {
if (!has_compatible_observations(x, to)) {
stop_incompatible_cast(
x,
to,
x_arg = x_arg,
to_arg = to_arg,
details = "Observations are not compatible."
)
}
x
}
#' @export
vec_cast.triptych_murphy.list <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_murphy.data.frame <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_murphy.tbl_df <- function(x, to, ...) {
x <- lapply(x, vec_cast, to = to)
f <- \(...) vec_c(..., .name_spec = "{outer}_{inner}")
do.call(f, x)
}
#' @export
vec_cast.triptych_murphy.double <- function(x, to, ...) {
y <- observations(to)
ref <- attr(to, "ref")
functional <- list(type = "prob")
C_murphydiag <- get(paste0("C_murphydiag_", functional$type, if (length(ref)) "_ref"))
md_args <- c(
list(x = x, y = y),
level = functional$level,
ref = ref
)
list(
estimate = do.call(C_murphydiag, md_args),
region = list(),
x = x
) |>
list() |>
new_triptych_murphy(y = y, ref = ref)
}
#' @export
eval_diag.triptych_murphy <- function(x, at, ...) {
purrr::map(x, at = at, .f = \(o, at) {
ind <- findInterval(at, o$estimate$knot, all.inside = TRUE)
w <- with(o$estimate, (at - knot[ind]) / (knot[ind + 1] - knot[ind]))
with(o$estimate, {
(1 - w) * val_right[ind] + w * val_left[ind + 1]
})
})
}
#' @export
observations.triptych_murphy <- function(x, ...) {
attr(x, "y")
}
#' @export
forecasts.triptych_murphy <- function(x, ...) {
f <- function(o) tibble::tibble(x = o$x)
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @rdname estimates
#' @export
estimates.triptych_murphy <- function(x, at = NULL, ...) {
f <- if (is.null(at)) {
function(o) {
tidyr::pivot_longer(
data = o$estimate,
cols = dplyr::starts_with("val"),
names_to = "limit",
names_prefix = "^val_",
values_to = "mean_score")
}
} else {
function(o) {
mean_score <- with(o$estimate, {
ind <- findInterval(at, knot, all.inside = TRUE)
w <- (at - knot[ind]) / (knot[ind + 1] - knot[ind])
(1 - w) * val_right[ind] + w * val_left[ind + 1]
})
tibble::tibble(
knot = at,
mean_score = mean_score
)
}
}
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @rdname regions
#' @export
regions.triptych_murphy <- function(x, ...) {
if (!has_regions(x)) return(NULL)
f <- function(o) o$region
g <- function(...) vec_rbind(..., .names_to = "forecast")
purrr::map(x, f) |>
do.call(g, args = _)
}
#' @export
has_regions.triptych_murphy <- function(x, ...) {
any(sapply(x, \(o) tibble::is_tibble(o$region)))
}
#' @export
add_confidence.triptych_murphy <- function(x, level = 0.9, method = "resampling_cases", ...) {
stopifnot(method %in% c("resampling_cases", "resampling_Bernoulli"))
m <- get(method)(x, level = level, ...)
for (i in seq_along(x)) {
x[[i]]$region <- m[[i]]
}
x
}
#' @rdname resampling_cases
#' @export
resampling_cases.triptych_murphy <- function(x, level = 0.9, n_boot = 1000, ...) {
#saved_seed <- .Random.seed
y <- observations(x)
thresholds <- seq(0, 1, length.out = 1000)
purrr::map(
.x = x,
level = level,
n_boot = n_boot,
.f = function(o, level, n_boot) {
bounds <- bootstrap_sample_cases(o$x, y, n_boot, murphy, thresholds) |>
bootstrap_quantile(probs = 0.5 + c(-0.5, 0.5) * level)
tibble::tibble(
threshold = thresholds,
lower = bounds[1L, ],
upper = bounds[2L, ],
method = paste0("resampling_cases_", n_boot),
level = level
)
}
)
}
#' @rdname resampling_Bernoulli
#' @export
resampling_Bernoulli.triptych_murphy <- function(x, level = 0.9, n_boot = 1000, ...) {
#saved_seed <- .Random.seed
y <- observations(x)
thresholds <- seq(0, 1, length.out = 1000)
purrr::map(
.x = x,
level = level,
n_boot = n_boot,
.f = function(o, level, n_boot) {
xr <- recalibrate_mean2(o$x, y)
bounds <- bootstrap_sample_Bernoulli(o$x, xr, n_boot, murphy, thresholds) |>
bootstrap_quantile(probs = 0.5 + c(-0.5, 0.5) * level)
tibble::tibble(
threshold = thresholds,
lower = bounds[1L, ],
upper = bounds[2L, ],
method = paste0("resampling_Bernoulli_", n_boot),
level = level
)
}
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.