Nothing
#' @title Inverse Probability of Censoring Weights (IPCW) Method
#' for Treatment Switching
#' @description Uses the inverse probability of censoring weights (IPCW)
#' method to obtain the hazard ratio estimate of the Cox model to
#' adjust for treatment switching.
#'
#' @param data The input data frame that contains the following variables:
#'
#' * \code{id}: The id to identify observations belonging to the same
#' subject for counting process data with time-dependent covariates.
#'
#' * \code{stratum}: The stratum.
#'
#' * \code{tstart}: The starting time of the time interval for
#' counting-process data with time-dependent covariates.
#'
#' * \code{tstop}: The stopping time of the time interval for
#' counting-process data with time-dependent covariates.
#'
#' * \code{event}: The event indicator, 1=event, 0=no event.
#'
#' * \code{treat}: The randomized treatment indicator, 1=treatment,
#' 0=control.
#'
#' * \code{swtrt}: The treatment switch indicator, 1=switch, 0=no switch.
#'
#' * \code{swtrt_time}: The time from randomization to treatment switch.
#'
#' * \code{swtrt_time_lower}: The lower bound of treatment switching time.
#'
#' * \code{swtrt_time_upper}: The upper bound of treatment switching time.
#'
#' * \code{base_cov}: The baseline covariates (excluding treat) used in
#' the outcome model.
#'
#' * \code{numerator}: The baseline covariates (excluding treat) used in
#' the switching model for the numerator for stabilized weights.
#'
#' * \code{denominator}: The baseline and time-dependent covariates
#' (excluding treat) used in the switching model for the denominator.
#'
#' @param id The name of the id variable in the input data.
#' @param stratum The name(s) of the stratum variable(s) in the input data.
#' @param tstart The name of the tstart variable in the input data.
#' @param tstop The name of the tstop variable in the input data.
#' @param event The name of the event variable in the input data.
#' @param treat The name of the treatment variable in the input data.
#' @param swtrt The name of the swtrt variable in the input data.
#' @param swtrt_time The name of the swtrt_time variable in the input data.
#' @param swtrt_time_lower The name of the swtrt_time_lower variable in
#' the input data.
#' @param swtrt_time_upper The name of the swtrt_time_upper variable in
#' the input data.
#' @param base_cov The names of baseline covariates (excluding
#' treat) in the input data for the Cox model.
#' @param numerator The names of baseline covariates
#' (excluding treat) in the input data for the numerator switching
#' model for stabilized weights.
#' @param denominator The names of baseline and time-dependent
#' covariates (excluding treat) in the input data for the denominator
#' switching model.
#' @param logistic_switching_model Whether a pooled logistic regression
#' switching model is used.
#' @param strata_main_effect_only Whether to only include the strata main
#' effects in the logistic regression switching model. Defaults to
#' \code{TRUE}, otherwise all possible strata combinations will be
#' considered in the switching model.
#' @param firth Whether the Firth's bias reducing penalized likelihood
#' should be used. The default is \code{FALSE}.
#' @param flic Whether to apply intercept correction to obtain more
#' accurate predicted probabilities. The default is \code{FALSE}.
#' @param ns_df Degrees of freedom for the natural cubic spline for
#' visit-specific intercepts of the pooled logistic regression model.
#' Defaults to 3 for two internal knots at the 33 and 67 percentiles
#' of the artificial censoring times due to treatment switching.
#' @param relative_time Whether to use the time relative to
#' \code{swtrt_time_lower} as the intercepts for the pooled logistic
#' regression model.
#' @param stabilized_weights Whether to use the stabilized weights.
#' @param trunc The truncation fraction of the weight distribution.
#' Defaults to 0 for no truncation in weights.
#' @param trunc_upper_only Whether to truncate the weights from the upper
#' end of the weight distribution only. Defaults to \code{TRUE}, otherwise
#' the weights will be truncated from both the lower and upper ends of
#' the distribution.
#' @param swtrt_control_only Whether treatment switching occurred only in
#' the control group.
#' @param alpha The significance level to calculate confidence intervals.
#' @param ties The method for handling ties in the Cox model, either
#' "breslow" or "efron" (default).
#' @param boot Whether to use bootstrap to obtain the confidence
#' interval for hazard ratio. Defaults to \code{TRUE}.
#' @param n_boot The number of bootstrap samples.
#' @param seed The seed to reproduce the bootstrap results.
#' The seed from the environment will be used if left unspecified.
#'
#' @details We use the following steps to obtain the hazard ratio estimate
#' and confidence interval had there been no treatment switching:
#'
#' * Exclude observations after treatment switch.
#'
#' * Set up the crossover and event indicators for the last time interval
#' for each subject.
#'
#' * For time-dependent covariates Cox switching models, replicate unique
#' event times across treatment arms within each subject.
#'
#' * Fit the denominator switching model (and the numerator switching model
#' for stabilized weights) to obtain the inverse probability
#' of censoring weights. This can be a Cox model with time-dependent
#' covariates or a pooled logistic regression model. For pooled logistic
#' regression switching model, the probability of remaining uncensored
#' (i.e., not switching) will be calculated by subtracting the
#' predicted probability of switching from 1 and then multiplied over
#' time up to the current time point.
#'
#' * Fit the weighted Cox model to the censored outcome survival times
#' to obtain the hazard ratio estimate.
#'
#' * Use either robust sandwich variance or bootstrapping to construct the
#' p-value and confidence interval for the hazard ratio.
#' If bootstrapping is used, the confidence interval
#' and corresponding p-value are calculated based on a t-distribution with
#' \code{n_boot - 1} degrees of freedom.
#'
#' @return A list with the following components:
#'
#' * \code{logrank_pvalue}: The two-sided p-value of the log-rank test
#' for an intention-to-treat (ITT) analysis.
#'
#' * \code{cox_pvalue}: The two-sided p-value for treatment effect based on
#' the Cox model.
#'
#' * \code{hr}: The estimated hazard ratio from the Cox model.
#'
#' * \code{hr_CI}: The confidence interval for hazard ratio.
#'
#' * \code{hr_CI_type}: The type of confidence interval for hazard ratio,
#' either "Cox model" or "bootstrap".
#'
#' * \code{data_switch}: A list of input data for the switching models by
#' treatment group.
#'
#' * \code{fit_switch}: A list of fitted switching models for the
#' denominator and numerator by treatment group.
#'
#' * \code{data_outcome}: The input data for the outcome Cox model
#' including the inverse probability of censoring weights.
#'
#' * \code{fit_outcome}: The fitted outcome Cox model.
#'
#' * \code{settings}: A list with the following components:
#'
#' - \code{logistic_switching_model}: Whether a pooled logistic
#' regression switching model is used.
#'
#' - \code{strata_main_effect_only}: Whether to only include the
#' strata main effects in the logistic regression switching model.
#'
#' - \code{firth}: Whether the Firth's bias reducing penalized likelihood
#' should be used.
#'
#' - \code{flic}: Whether to apply intercept correction to obtain more
#' accurate predicted probabilities.
#'
#' - \code{ns_df}: Degrees of freedom for the natural cubic spline.
#'
#' - \code{relative_time}: Whether to use the relative time as the
#' intercepts.
#'
#' - \code{stabilized_weights}: Whether to use the stabilized weights.
#'
#' - \code{trunc}: The truncation fraction of the weight distribution.
#'
#' - \code{trunc_upper_only}: Whether to truncate the weights from the
#' upper end of the distribution only.
#'
#' - \code{swtrt_control_only} Whether treatment switching occurred only
#' in the control group.
#'
#' - \code{alpa}: The significance level to calculate confidence
#' intervals.
#'
#' - \code{ties}: The method for handling ties in the Cox model.
#'
#' - \code{boot}: Whether to use bootstrap to obtain the confidence
#' interval for hazard ratio.
#'
#' - \code{n_boot}: The number of bootstrap samples.
#'
#' - \code{seed}: The seed to reproduce the bootstrap results.
#'
#' * \code{hr_boots}: The bootstrap hazard ratio estimates if \code{boot} is
#' \code{TRUE}.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#' James M. Robins and Dianne M. Finkelstein.
#' Correcting for noncompliance and dependent censoring in an AIDS clinical
#' trial with inverse probability of censoring weighted (IPCW) log-rank tests.
#' Biometrics. 2000;56:779-788.
#'
#' @examples
#'
#' # Example 1: pooled logistic regression switching model
#'
#' sim1 <- tsegestsim(
#' n = 500, allocation1 = 2, allocation2 = 1, pbprog = 0.5,
#' trtlghr = -0.5, bprogsl = 0.3, shape1 = 1.8,
#' scale1 = 0.000025, shape2 = 1.7, scale2 = 0.000015,
#' pmix = 0.5, admin = 5000, pcatnotrtbprog = 0.5,
#' pcattrtbprog = 0.25, pcatnotrt = 0.2, pcattrt = 0.1,
#' catmult = 0.5, tdxo = 1, ppoor = 0.1, pgood = 0.04,
#' ppoormet = 0.4, pgoodmet = 0.2, xomult = 1.4188308,
#' milestone = 546, swtrt_control_only = TRUE,
#' outputRawDataset = 1, seed = 2000)
#'
#' fit1 <- ipcw(
#' sim1$paneldata, id = "id", tstart = "tstart",
#' tstop = "tstop", event = "died", treat = "trtrand",
#' swtrt = "xo", swtrt_time = "xotime",
#' swtrt_time_lower = "timePFSobs",
#' swtrt_time_upper = "xotime_upper", base_cov = "bprog",
#' numerator = "bprog", denominator = "bprog*catlag",
#' logistic_switching_model = TRUE, ns_df = 3,
#' relative_time = TRUE, swtrt_control_only = TRUE,
#' boot = FALSE)
#'
#' c(fit1$hr, fit1$hr_CI)
#'
#' # Example 2: time-dependent covariates Cox switching model
#'
#' fit2 <- ipcw(
#' shilong, id = "id", tstart = "tstart", tstop = "tstop",
#' event = "event", treat = "bras.f", swtrt = "co",
#' swtrt_time = "dco",
#' base_cov = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
#' "pathway.f"),
#' numerator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
#' "pathway.f"),
#' denominator = c("agerand", "sex.f", "tt_Lnum", "rmh_alea.c",
#' "pathway.f", "ps", "ttc", "tran"),
#' swtrt_control_only = FALSE, boot = FALSE)
#'
#' c(fit2$hr, fit2$hr_CI)
#'
#' @export
ipcw <- function(data, id = "id", stratum = "", tstart = "tstart",
tstop = "tstop", event = "event", treat = "treat",
swtrt = "swtrt", swtrt_time = "swtrt_time",
swtrt_time_lower = "", swtrt_time_upper = "",
base_cov = "", numerator = "", denominator = "",
logistic_switching_model = FALSE,
strata_main_effect_only = TRUE, firth = FALSE,
flic = FALSE, ns_df = 3, relative_time = TRUE,
stabilized_weights = TRUE,
trunc = 0, trunc_upper_only = TRUE,
swtrt_control_only = TRUE, alpha = 0.05, ties = "efron",
boot = TRUE, n_boot = 1000, seed = NA) {
rownames(data) = NULL
elements = c(id, stratum, tstart, tstop, event, treat, swtrt,
base_cov, numerator, denominator)
elements = unique(elements[elements != "" & elements != "none"])
mf = model.frame(formula(paste("~", paste(elements, collapse = "+"))),
data = data)
rownum = as.integer(rownames(mf))
df = data[rownum,]
nvar = length(base_cov)
if (missing(base_cov) || is.null(base_cov) || (nvar == 1 && (
base_cov[1] == "" || tolower(base_cov[1]) == "none"))) {
p = 0
} else {
t1 = terms(formula(paste("~", paste(base_cov, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p = length(t3)
}
if (p >= 1) {
mm = model.matrix(t1, df)
colnames(mm) = make.names(colnames(mm))
varnames = colnames(mm)[-1]
for (i in 1:length(varnames)) {
if (!(varnames[i] %in% names(df))) {
df[,varnames[i]] = mm[,varnames[i]]
}
}
} else {
varnames = ""
}
nvar2 = length(numerator)
if (missing(numerator) || is.null(numerator) || (nvar2 == 1 && (
numerator[1] == "" || tolower(numerator[1]) == "none"))) {
p2 = 0
} else {
t1 = terms(formula(paste("~", paste(numerator, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p2 = length(t3)
}
if (p2 >= 1) {
mm2 = model.matrix(t1, df)
colnames(mm2) = make.names(colnames(mm2))
varnames2 = colnames(mm2)[-1]
for (i in 1:length(varnames2)) {
if (!(varnames2[i] %in% names(df))) {
df[,varnames2[i]] = mm2[,varnames2[i]]
}
}
} else {
varnames2 = ""
}
nvar3 = length(denominator)
if (missing(denominator) || is.null(denominator) || (nvar3 == 1 && (
denominator[1] == "" || tolower(denominator[1]) == "none"))) {
p3 = 0
} else {
t1 = terms(formula(paste("~", paste(denominator, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p3 = length(t3)
}
if (p3 >= 1) {
mm3 = model.matrix(t1, df)
colnames(mm3) = make.names(colnames(mm3))
varnames3 = colnames(mm3)[-1]
for (i in 1:length(varnames3)) {
if (!(varnames3[i] %in% names(df))) {
df[,varnames3[i]] = mm3[,varnames3[i]]
}
}
} else {
varnames3 = ""
}
if (missing(swtrt_time_lower) || is.null(swtrt_time_lower) || (
swtrt_time_lower[1] == "" || tolower(swtrt_time_lower[1]) == "none")) {
swtrt_time_lower = "swtrt_time_lower";
df$swtrt_time_lower = 0;
}
if (missing(swtrt_time_upper) || is.null(swtrt_time_upper) || (
swtrt_time_upper[1] == "" || tolower(swtrt_time_upper[1]) == "none")) {
swtrt_time_upper = "swtrt_time_upper";
df$swtrt_time_upper = 1.0e8;
}
fit <- ipcwcpp(data = df, id = id, stratum = stratum, tstart = tstart,
tstop = tstop, event = event, treat = treat,
swtrt = swtrt, swtrt_time = swtrt_time,
swtrt_time_lower = swtrt_time_lower,
swtrt_time_upper = swtrt_time_upper, base_cov = varnames,
numerator = varnames2, denominator = varnames3,
logistic_switching_model = logistic_switching_model,
strata_main_effect_only = strata_main_effect_only,
firth = firth, flic = flic, ns_df = ns_df,
relative_time = relative_time,
stabilized_weights = stabilized_weights,
trunc = trunc, trunc_upper_only = trunc_upper_only,
swtrt_control_only = swtrt_control_only, alpha = alpha,
ties = ties, boot = boot, n_boot = n_boot, seed = seed)
fit$data_outcome$uid <- NULL
fit
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.