Nothing
#' @title Residuals for Proportional Hazards Regression Models
#' @description Obtains the martingale, deviance, score, or Schoenfeld
#' residuals for a proportional hazards regression model.
#'
#' @param fit_phregr The output from the \code{phregr} call.
#' @param type The type of residuals desired, with options including
#' \code{"martingale"}, \code{"deviance"}, \code{"score"},
#' \code{"schoenfeld"}, \code{"dfbeta"}, \code{"dfbetas"}, and
#' \code{"scaledsch"}.
#' @param collapse Whether to collapse the residuals by \code{id}.
#' This is not applicable for Schoenfeld type residuals.
#' @param weighted Whether to compute weighted residuals.
#'
#' @details
#' For score and Schoenfeld type residuals, the proportional hazards model
#' must include at least one covariate. The algorithms for \code{deviance},
#' \code{dfbeta}, \code{dfbetas}, and \code{scaledsch} residuals follow
#' the \code{residuals.coxph} function in the \code{survival} package.
#'
#' @return For martingale and deviance residuals, the result is a vector
#' with one element corresponding to each subject (without \code{collapse}).
#' For score residuals, the result is a matrix where each row represents
#' a subject and each column corresponds to a variable. The row order
#' aligns with the input data used in the original fit. For Schoenfeld
#' residuals, the result is a matrix with one row for each event and
#' one column per variable. These rows are sorted by time within strata,
#' with the attributes \code{stratum} and \code{time} included.
#'
#' Score residuals represent each individual's contribution to the score
#' vector. Two commonly used transformations of this are \code{dfbeta},
#' which represents the approximate change in the coefficient vector
#' if the observation is excluded, and \code{dfbetas}, which gives the
#' approximate change in the coefficients scaled by the standard error
#' of the coefficients.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#' Terry M. Therneau, Patricia M. Grambsch, and Thomas M. Fleming.
#' Martingale based residuals for survival models.
#' Biometrika 1990; 77:147-160.
#'
#' Patricia M. Grambsch and Terry M. Therneau.
#' Proportional hazards tests and diagnostics based on weighted residuals.
#' Biometrika 1994; 81:515-26.
#'
#' @examples
#'
#' library(dplyr)
#'
#' # Example 1 with right-censored data
#' fit1 <- phregr(data = rawdata %>% filter(iterationNumber == 1) %>%
#' mutate(treat = 1*(treatmentGroup == 1)),
#' stratum = "stratum",
#' time = "timeUnderObservation", event = "event",
#' covariates = "treat")
#'
#' ressco <- residuals_phregr(fit1, type = "score")
#'
#' # Example 2 with counting process data
#' fit2 <- phregr(data = heart %>% mutate(rx = as.numeric(transplant) - 1),
#' time = "start", time2 = "stop", event = "event",
#' covariates = c("rx", "age"), id = "id", robust = TRUE)
#'
#' resssch <- residuals_phregr(fit2, type = "scaledsch")
#'
#' @export
residuals_phregr <- function(
fit_phregr, type=c("martingale", "deviance", "score", "schoenfeld",
"dfbeta", "dfbetas", "scaledsch"),
collapse=FALSE, weighted=(type %in% c("dfbeta", "dfbetas"))) {
p = fit_phregr$p
beta = fit_phregr$beta
residuals = fit_phregr$residuals
data = fit_phregr$data
stratum = fit_phregr$stratum
time = fit_phregr$time
time2 = fit_phregr$time2
event = fit_phregr$event
covariates = fit_phregr$covariates
weight = fit_phregr$weight
offset = fit_phregr$offset
id = fit_phregr$id
ties = fit_phregr$ties
param = fit_phregr$param
rownames(data) = NULL
elements = c(stratum, time, event, covariates, weight, offset, id)
elements = unique(elements[elements != "" & elements != "none"])
mf = model.frame(formula(paste("~", paste(elements, collapse = "+"))),
data = data)
rownum = as.integer(rownames(mf))
df = data[rownum,]
nvar = length(covariates)
if (missing(covariates) || is.null(covariates) || (nvar == 1 && (
covariates[1] == "" || tolower(covariates[1]) == "none"))) {
p3 = 0
} else {
t1 = terms(formula(paste("~", paste(covariates, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p3 = length(t3)
}
if (p >= 1 && p3 >= 1) {
mf = model.frame(t1, df)
mm = model.matrix(t1, mf)
colnames(mm) = make.names(colnames(mm))
varnames = colnames(mm)[-1]
for (i in 1:length(varnames)) {
if (!(varnames[i] %in% names(df))) {
df[,varnames[i]] = mm[,varnames[i]]
}
}
} else {
varnames = ""
}
type <- match.arg(type)
otype <- type
if (type=='dfbeta' || type=='dfbetas') {
type <- 'score'
if (missing(weighted))
weighted <- TRUE # different default for this case
}
if (type=='scaledsch') type<-'schoenfeld'
n <- length(residuals)
rr <- residuals
vv <- drop(fit_phregr$vbeta_naive)
if (is.null(vv)) vv <- drop(fit_phregr$vbeta)
if (weight != "") {
weights <- df[[weight]]
} else {
weights <- rep(1,n)
}
if (id != "") {
idn <- df[[id]]
} else {
idn <- seq(1,n)
}
if (type == 'martingale') rr <- fit_phregr$residuals
if (type=='schoenfeld') {
if (p == 0) stop("covariates must be present for schoenfeld residuals")
temp = residuals_phregcpp(p = p,
beta = beta,
data = df,
stratum = stratum,
time = time,
time2 = time2,
event = event,
covariates = varnames,
weight = weight,
offset = offset,
id = id,
ties = ties,
type = "schoenfeld")
if (p==1) {
rr <- c(temp$resid)
} else {
rr <- temp$resid
}
if (weighted) rr <- rr * weights[temp$obs]
if (length(unique(temp$stratumn)) > 1) {
attr(rr, "stratum") <- temp$stratumn
}
attr(rr, "time") <- temp$time
if (otype=='scaledsch') {
ndead <- length(temp$obs)
if (nvar==1) {
rr <- rr * vv * ndead + beta
} else {
rr <- drop(rr %*% vv *ndead + rep(beta, each=nrow(rr)))
}
}
if (is.matrix(rr)) colnames(rr) <- param
return(rr)
}
if (type=='score') {
if (p == 0) stop("covariates must be present for score residuals")
temp = residuals_phregcpp(p = p,
beta = beta,
data = df,
stratum = stratum,
time = time,
time2 = time2,
event = event,
covariates = varnames,
weight = weight,
offset = offset,
id = id,
ties = ties,
type = "score")
if (p==1) {
rr <- c(temp$resid)
} else {
rr <- temp$resid
}
if (otype=='dfbeta') {
if (is.matrix(rr)) {
rr <- rr %*% vv
} else {
rr <- rr * vv
}
}
else if (otype=='dfbetas') {
if (is.matrix(rr)) {
rr <- (rr %*% vv) %*% diag(sqrt(1/diag(vv)))
} else {
rr <- rr * sqrt(vv)
}
}
if (is.matrix(rr)) colnames(rr) <- param
}
#
# Multiply up by case weights (which will be 1 for unweighted)
#
if (weighted) rr <- rr * weights
status <- df[[event]]
# Collapse if desired
if (collapse) {
rr <- drop(rowsum(rr, idn))
if (type=='deviance') status <- drop(rowsum(status, idn))
}
# Deviance residuals are computed after collapsing occurs
if (type=='deviance') {
sign(rr) *sqrt(-2* (rr+ ifelse(status==0, 0, status*log(status-rr))))
} else {
rr
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.