Nothing
#' @title The Two-Stage Estimation (TSE) Method Using g-estimation
#' for Treatment Switching
#' @description Obtains the causal parameter estimate of the logistic
#' regression switching model and the hazard ratio estimate of
#' the Cox model to adjust for treatment switching.
#'
#' @param data The input data frame that contains the following variables:
#'
#' * \code{id}: The id to identify observations belonging to the same
#' subject for counting process data with time-dependent covariates.
#'
#' * \code{stratum}: The stratum.
#'
#' * \code{tstart}: The starting time of the time interval for
#' counting-process data with time-dependent covariates.
#'
#' * \code{tstop}: The stopping time of the time interval for
#' counting-process data with time-dependent covariates.
#'
#' * \code{event}: The event indicator, 1=event, 0=no event.
#'
#' * \code{treat}: The randomized treatment indicator, 1=treatment,
#' 0=control.
#'
#' * \code{censor_time}: The administrative censoring time. It should
#' be provided for all subjects including those who had events.
#'
#' * \code{pd}: The disease progression indicator, 1=PD, 0=no PD.
#'
#' * \code{pd_time}: The time from randomization to PD.
#'
#' * \code{swtrt}: The treatment switch indicator, 1=switch, 0=no switch.
#'
#' * \code{swtrt_time}: The time from randomization to treatment switch.
#'
#' * \code{swtrt_time_upper}: The upper bound of treatment switching time.
#'
#' * \code{base_cov}: The baseline covariates (excluding treat).
#'
#' * \code{conf_cov}: The confounding variables for predicting
#' treatment switching (excluding treat).
#'
#' @param id The name of the id variable in the input data.
#' @param stratum The name(s) of the stratum variable(s) in the input data.
#' @param tstart The name of the tstart variable in the input data.
#' @param tstop The name of the tstop variable in the input data.
#' @param event The name of the event variable in the input data.
#' @param treat The name of the treatment variable in the input data.
#' @param censor_time The name of the censor_time variable in the input data.
#' @param pd The name of the pd variable in the input data.
#' @param pd_time The name of the pd_time variable in the input data.
#' @param swtrt The name of the swtrt variable in the input data.
#' @param swtrt_time The name of the swtrt_time variable in the input data.
#' @param swtrt_time_upper The name of the swtrt_time_upper variable in the
#' input data.
#' @param base_cov The names of baseline covariates (excluding
#' treat) in the input data for the Cox model.
#' @param conf_cov The names of confounding variables (excluding
#' treat) in the input data for the logistic regression switching model.
#' @param low_psi The lower limit of the causal parameter.
#' @param hi_psi The upper limit of the causal parameter.
#' @param n_eval_z The number of points between \code{low_psi} and
#' \code{hi_psi} (inclusive) at which to evaluate the Wald
#' statistics for the coefficient of the counterfactual in the logistic
#' regression switching model.
#' @param strata_main_effect_only Whether to only include the strata main
#' effects in the logistic regression switching model. Defaults to
#' \code{TRUE}, otherwise all possible strata combinations will be
#' considered in the switching model.
#' @param firth Whether the Firth's bias reducing penalized likelihood
#' should be used. The default is \code{FALSE}.
#' @param flic Whether to apply intercept correction to obtain more
#' accurate predicted probabilities. The default is \code{FALSE}.
#' @param recensor Whether to apply recensoring to counterfactual
#' survival times. Defaults to \code{TRUE}.
#' @param admin_recensor_only Whether to apply recensoring to administrative
#' censoring times only. Defaults to \code{TRUE}. If \code{FALSE},
#' recensoring will be applied to the actual censoring times for dropouts.
#' @param swtrt_control_only Whether treatment switching occurred only in
#' the control group.
#' @param alpha The significance level to calculate confidence intervals.
#' @param ties The method for handling ties in the Cox model, either
#' "breslow" or "efron" (default).
#' @param tol The desired accuracy (convergence tolerance) for \code{psi}.
#' @param boot Whether to use bootstrap to obtain the confidence
#' interval for hazard ratio. Defaults to \code{TRUE}.
#' @param n_boot The number of bootstrap samples.
#' @param seed The seed to reproduce the bootstrap results.
#' The seed from the environment will be used if left unspecified.
#'
#' @details We use the following steps to obtain the hazard ratio estimate
#' and confidence interval had there been no treatment switching:
#'
#' * Use a pooled logistic regression switching model to estimate
#' the causal parameter \eqn{\psi} based on the patients in the
#' control group who had disease progression:
#' \deqn{\textrm{logit}(p(E_{ik})) = \alpha U_{i,\psi} +
#' \sum_{j} \beta_j x_{ijk}}
#' where \eqn{E_{ik}} is the observed switch indicator for individual
#' \eqn{i} at observation \eqn{k},
#' \deqn{U_{i,\psi} = T_{C_i} + e^{\psi}T_{E_i}}
#' is the counterfactual survival time for individual \eqn{i} given a
#' specific value for \eqn{\psi}, and \eqn{x_{ijk}} are the confounders
#' for individual \eqn{i} at observation \eqn{k}.
#' When applied from a secondary baseline, \eqn{U_{i,\psi}}
#' refers to post-secondary baseline counterfactual survival, where
#' \eqn{T_{C_i}} corresponds to the time spent after the secondary baseline
#' on control treatment, and \eqn{T_{E_i}} corresponds to the time spent
#' after the secondary baseline on the experimental treatment.
#'
#' * Search for \eqn{\psi} such that the estimate of \eqn{\alpha} is close
#' to zero. This will be the estimate of the caual parameter. The
#' confidence interval for \eqn{\psi} can be obtained as the value of
#' \eqn{\psi} such that the corresponding two-sided p-value for
#' testing \eqn{H_0:\alpha = 0} in the switching model is equal to the
#' nominal significance level.
#'
#' * Derive the counterfactual survival times for control patients
#' had there been no treatment switching.
#'
#' * Fit the Cox proportional hazards model to the observed survival times
#' for the experimental group and the counterfactual survival times
#' for the control group to obtain the hazard ratio estimate.
#'
#' * If bootstrapping is used, the confidence interval and corresponding
#' p-value for hazard ratio are calculated based on a t-distribution with
#' \code{n_boot - 1} degrees of freedom.
#'
#' @return A list with the following components:
#'
#' * \code{psi}: The estimated causal parameter for the control group.
#'
#' * \code{psi_CI}: The confidence interval for \code{psi}.
#'
#' * \code{psi_CI_type}: The type of confidence interval for \code{psi},
#' i.e., "logistic model" or "bootstrap".
#'
#' * \code{logrank_pvalue}: The two-sided p-value of the log-rank test
#' for an intention-to-treat (ITT) analysis.
#'
#' * \code{cox_pvalue}: The two-sided p-value for treatment effect based on
#' the Cox model.
#'
#' * \code{hr}: The estimated hazard ratio from the Cox model.
#'
#' * \code{hr_CI}: The confidence interval for hazard ratio.
#'
#' * \code{hr_CI_type}: The type of confidence interval for hazard ratio,
#' either "Cox model" or "bootstrap".
#'
#' * \code{analysis_switch}: A list of data and analysis results related to
#' treatment switching.
#'
#' - \code{data_switch}: The list of input data for the time from
#' secondary baseline to switch by treatment group. The variables
#' include \code{id}, \code{stratum} (if applicable), \code{swtrt},
#' and \code{swtrt_time}. If \code{swtrt == 0}, then \code{swtrt_time}
#' is censored at the time from secondary baseline to either
#' death or censoring.
#'
#' - \code{km_switch}: The list of Kaplan-Meier plots for the time
#' from secondary baseline to switch by treatment group.
#'
#' - \code{eval_z}: The list of data by treatment group containing
#' the Wald statistics for the coefficient of the counterfactual
#' in the logistic regression switching model, evaluated at
#' a sequence of \code{psi} values. Used to plot and check
#' if the range of \code{psi} values to search for the solution
#' and limits of confidence interval of \code{psi} need be modified.
#'
#' - \code{data_nullcox}: The list of input data for counterfactual
#' survival times for the null Cox model by treatment group.
#'
#' - \code{fit_nullcox}: The list of fitted null Cox models for
#' counterfactual survival times by treatment group, which contains
#' the martingale residuals.
#'
#' - \code{data_logis}: The list of input data for pooled logistic
#' regression models for treatment switching using g-estimation.
#'
#' - \code{fit_logis}: The list of fitted pooled logistic regression
#' models for treatment switching using g-estimation.
#'
#' * \code{data_outcome}: The input data for the outcome Cox model.
#'
#' * \code{fit_outcome}: The fitted outcome Cox model.
#'
#' * \code{settings}: A list with the following components:
#'
#' - \code{low_psi}: The lower limit of the causal parameter.
#'
#' - \code{hi_psi}: The upper limit of the causal parameter.
#'
#' - \code{n_eval_z}: The number of points between \code{low_psi} and
#' \code{hi_psi} (inclusive) at which to evaluate the Wald statistics
#' for the coefficient for the counterfactual in the logistic
#' regression switching model.
#'
#' - \code{strata_main_effect_only}: Whether to only include the strata
#' main effects in the logistic regression switching model.
#'
#' - \code{firth}: Whether the Firth's penalized likelihood is used.
#'
#' - \code{flic}: Whether to apply intercept correction.
#'
#' - \code{recensor}: Whether to apply recensoring to counterfactual
#' survival times.
#'
#' - \code{admin_recensor_only}: Whether to apply recensoring to
#' administrative censoring times only.
#'
#' - \code{swtrt_control_only}: Whether treatment switching occurred
#' only in the control group.
#'
#' - \code{alpha}: The significance level to calculate confidence
#' intervals.
#'
#' - \code{ties}: The method for handling ties in the Cox model.
#'
#' - \code{tol}: The desired accuracy (convergence tolerance)
#' for \code{psi}.
#'
#' - \code{boot}: Whether to use bootstrap to obtain the confidence
#' interval for hazard ratio.
#'
#' - \code{n_boot}: The number of bootstrap samples.
#'
#' - \code{seed}: The seed to reproduce the bootstrap results.
#'
#' * \code{psi_trt}: The estimated causal parameter for the experimental
#' group if \code{swtrt_control_only} is \code{FALSE}.
#'
#' * \code{psi_trt_CI}: The confidence interval for \code{psi_trt} if
#' \code{swtrt_control_only} is \code{FALSE}.
#'
#' * \code{hr_boots}: The bootstrap hazard ratio estimates if \code{boot} is
#' \code{TRUE}.
#'
#' * \code{psi_boots}: The bootstrap \code{psi} estimates if \code{boot} is
#' \code{TRUE}.
#'
#' * \code{psi_trt_boots}: The bootstrap \code{psi_trt} estimates if
#' \code{boot} is \code{TRUE} and \code{swtrt_control_only} is
#' \code{FALSE}.
#'
#' @author Kaifeng Lu, \email{kaifenglu@@gmail.com}
#'
#' @references
#' NR Latimer, IR White, K Tilling, and U Siebert.
#' Improved two-stage estimation to adjust for treatment switching in
#' randomised trials: g-estimation to address time-dependent confounding.
#' Statistical Methods in Medical Research. 2020;29(10):2900-2918.
#'
#' @examples
#'
#' # Example 1: one-way treatment switching (control to active)
#'
#' sim1 <- tsegestsim(
#' n = 500, allocation1 = 2, allocation2 = 1, pbprog = 0.5,
#' trtlghr = -0.5, bprogsl = 0.3, shape1 = 1.8,
#' scale1 = 0.000025, shape2 = 1.7, scale2 = 0.000015,
#' pmix = 0.5, admin = 5000, pcatnotrtbprog = 0.5,
#' pcattrtbprog = 0.25, pcatnotrt = 0.2, pcattrt = 0.1,
#' catmult = 0.5, tdxo = 1, ppoor = 0.1, pgood = 0.04,
#' ppoormet = 0.4, pgoodmet = 0.2, xomult = 1.4188308,
#' milestone = 546, swtrt_control_only = TRUE,
#' outputRawDataset = 1, seed = 2000)
#'
#' fit1 <- tsegest(
#' data = sim1$paneldata, id = "id",
#' tstart = "tstart", tstop = "tstop", event = "died",
#' treat = "trtrand", censor_time = "censor_time",
#' pd = "progressed", pd_time = "timePFSobs", swtrt = "xo",
#' swtrt_time = "xotime", swtrt_time_upper = "xotime_upper",
#' base_cov = "bprog", conf_cov = "bprog*catlag",
#' low_psi = -3, hi_psi = 3, strata_main_effect_only = TRUE,
#' recensor = TRUE, admin_recensor_only = TRUE,
#' swtrt_control_only = TRUE, alpha = 0.05, ties = "efron",
#' tol = 1.0e-6, boot = FALSE)
#'
#' c(fit1$hr, fit1$hr_CI)
#'
#' # Example 2: two-way treatment switching
#'
#' sim2 <- tsegestsim(
#' n = 500, allocation1 = 2, allocation2 = 1, pbprog = 0.5,
#' trtlghr = -0.5, bprogsl = 0.3, shape1 = 1.8,
#' scale1 = 0.000025, shape2 = 1.7, scale2 = 0.000015,
#' pmix = 0.5, admin = 5000, pcatnotrtbprog = 0.5,
#' pcattrtbprog = 0.25, pcatnotrt = 0.2, pcattrt = 0.1,
#' catmult = 0.5, tdxo = 1, ppoor = 0.1, pgood = 0.04,
#' ppoormet = 0.4, pgoodmet = 0.2, xomult = 1.4188308,
#' milestone = 546, swtrt_control_only = FALSE,
#' outputRawDataset = 1, seed = 2000)
#'
#' fit2 <- tsegest(
#' data = sim2$paneldata, id = "id",
#' tstart = "tstart", tstop = "tstop", event = "died",
#' treat = "trtrand", censor_time = "censor_time",
#' pd = "progressed", pd_time = "timePFSobs", swtrt = "xo",
#' swtrt_time = "xotime", swtrt_time_upper = "xotime_upper",
#' base_cov = "bprog", conf_cov = "bprog*catlag",
#' low_psi = -3, hi_psi = 3, strata_main_effect_only = TRUE,
#' recensor = TRUE, admin_recensor_only = TRUE,
#' swtrt_control_only = FALSE, alpha = 0.05, ties = "efron",
#' tol = 1.0e-6, boot = FALSE)
#'
#' c(fit2$hr, fit2$hr_CI)
#'
#' @export
tsegest <- function(data, id = "id", stratum = "",
tstart = "tstart", tstop = "tstop", event = "event",
treat = "treat", censor_time = "censor_time",
pd = "pd", pd_time = "pd_time",
swtrt = "swtrt", swtrt_time = "swtrt_time",
swtrt_time_upper = "", base_cov = "", conf_cov = "",
low_psi = -3, hi_psi = 3, n_eval_z = 100,
strata_main_effect_only = TRUE,
firth = FALSE, flic = FALSE,
recensor = TRUE, admin_recensor_only = TRUE,
swtrt_control_only = TRUE, alpha = 0.05,
ties = "efron", tol = 1.0e-6,
boot = TRUE, n_boot = 1000, seed = NA) {
rownames(data) = NULL
elements = c(id, stratum, tstart, tstop, event, treat, censor_time,
pd, swtrt, base_cov, conf_cov)
elements = unique(elements[elements != "" & elements != "none"])
mf = model.frame(formula(paste("~", paste(elements, collapse = "+"))),
data = data)
rownum = as.integer(rownames(mf))
df = data[rownum,]
nvar = length(base_cov)
if (missing(base_cov) || is.null(base_cov) || (nvar == 1 && (
base_cov[1] == "" || tolower(base_cov[1]) == "none"))) {
p = 0
} else {
t1 = terms(formula(paste("~", paste(base_cov, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p = length(t3)
}
if (p >= 1) {
mm = model.matrix(t1, df)
colnames(mm) = make.names(colnames(mm))
varnames = colnames(mm)[-1]
for (i in 1:length(varnames)) {
if (!(varnames[i] %in% names(df))) {
df[,varnames[i]] = mm[,varnames[i]]
}
}
} else {
varnames = ""
}
nvar2 = length(conf_cov)
if (missing(conf_cov) || is.null(conf_cov) || (nvar2 == 1 && (
conf_cov[1] == "" || tolower(conf_cov[1]) == "none"))) {
p2 = 0
} else {
t1 = terms(formula(paste("~", paste(conf_cov, collapse = "+"))))
t2 = attr(t1, "factors")
t3 = rownames(t2)
p2 = length(t3)
}
if (p2 >= 1) {
mm2 = model.matrix(t1, df)
colnames(mm2) = make.names(colnames(mm2))
varnames2 = colnames(mm2)[-1]
for (i in 1:length(varnames2)) {
if (!(varnames2[i] %in% names(df))) {
df[,varnames2[i]] = mm2[,varnames2[i]]
}
}
} else {
varnames2 = ""
}
if (missing(swtrt_time_upper) || is.null(swtrt_time_upper) || (
swtrt_time_upper[1] == "" || tolower(swtrt_time_upper[1]) == "none")) {
swtrt_time_upper = "swtrt_time_upper";
df$swtrt_time_upper = 1.0e8;
}
tsegestcpp(data = df, id = id, stratum = stratum,
tstart = tstart, tstop = tstop, event = event,
treat = treat, censor_time = censor_time, pd = pd,
pd_time = pd_time, swtrt = swtrt, swtrt_time = swtrt_time,
swtrt_time_upper = swtrt_time_upper,
base_cov = varnames, conf_cov = varnames2,
low_psi = low_psi, hi_psi = hi_psi, n_eval_z = n_eval_z,
strata_main_effect_only = strata_main_effect_only,
firth = firth, flic = flic,
recensor = recensor, admin_recensor_only = admin_recensor_only,
swtrt_control_only = swtrt_control_only, alpha = alpha,
ties = ties, tol = tol, boot = boot, n_boot = n_boot,
seed = seed)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.