Nothing
library(parsnip)
library(workflows)
library(tune)
library(rsample)
library(recipes)
library(yardstick)
library(dplyr)
library(dials)
library(rlang)
library(tailor)
library(tibble)
# ------------------------------------------------------------------------------
dt_spec <- parsnip::decision_tree(
mode = "classification",
min_n = tune(),
engine = "C5.0"
)
knn_cls_spec <- parsnip::nearest_neighbor(
mode = "classification",
neighbors = tune()
)
if (rlang::is_installed("probably")) {
cls_est_post <- tailor::tailor() |>
tailor::adjust_probability_calibration(method = "logistic")
cls_cal_tune_post <- tailor::tailor() |>
tailor::adjust_probability_calibration(method = "logistic") |>
tailor::adjust_probability_threshold(threshold = tune("cut"))
cls_cal <- tailor::tailor() |>
tailor::adjust_probability_calibration()
cls_tenth <- tailor::tailor() |>
tailor::adjust_probability_threshold(threshold = 1 / 10)
cls_post <- tailor::tailor() |>
tailor::adjust_probability_threshold(threshold = tune("cut"))
}
fac_2c <- structure(
integer(0),
levels = c("Class1", "Class2"),
class = "factor"
)
cls_two_class_plist <-
tibble::tibble(
Class = fac_2c,
.pred_class = fac_2c,
.pred_Class1 = double(0),
.pred_Class2 = double(0),
.row = integer(0),
)
sim_2c <- structure(
integer(0),
levels = c("class_1", "class_2"),
class = "factor"
)
cls_sim_plist <-
tibble::tibble(
class = sim_2c,
.pred_class = sim_2c,
.pred_class_1 = double(0),
.pred_class_2 = double(0),
.row = integer(0),
)
# ------------------------------------------------------------------------------
dt_grid <- tibble::tibble(min_n = c(2, 4))
knn_grid <- tibble::tibble(neighbors = 1:3)
svm_grid <- tibble::tibble(degree = 1:2)
make_post_data <- function(mode = "classification") {
set.seed(1)
if (mode == "classification") {
dat <- modeldata::sim_classification(1000)
nm <- "class"
} else if (mode == "regression") {
dat <- modeldata::sim_regression(1000)
nm <- "outcome"
} else if (mode == "censored") {
require(survival)
dat <- modeldata::deliveries |>
dplyr::select(time_to_delivery, starts_with("item"))
evt <- rep_len(c(rep(1, 9), 0), nrow(dat))
dat$outcome <- survival::Surv(dat$time_to_delivery, evt)
dat$time_to_delivery <- NULL
nm <- "outcome"
} else {
cli::abort(
"Only have modes for classification, regression, and censored regression so far"
)
}
rs <- rsample::mc_cv(dat, times = 2)
rs_split <- rs$splits[[1]]
rs_args <- rsample::.get_split_args(rs)
list(data = dat, rs = rs, split = rs_split, args = rs_args, y = nm)
}
# ------------------------------------------------------------------------------
puromycin <- tibble::as_tibble(Puromycin)
puromycin_rec <- recipes::recipe(rate ~ ., data = puromycin) |>
recipes::step_dummy(state)
puromycin_tune_rec <- puromycin_rec |>
recipes::step_poly(conc, degree = tune())
knn_reg_spec <- parsnip::nearest_neighbor(
mode = "regression",
neighbors = tune()
)
svm_spec <- parsnip::svm_poly(mode = "regression", cost = 1, degree = tune())
reg_post <- tailor::tailor() |>
tailor::adjust_predictions_custom(.pred = .pred + 10000)
if (rlang::is_installed("probably")) {
reg_cal_max <- tailor::tailor() |>
tailor::adjust_numeric_calibration() |>
tailor::adjust_numeric_range(upper_limit = tune())
reg_cal <- tailor::tailor() |>
tailor::adjust_numeric_calibration()
reg_cal_tune <- tailor::tailor() |>
tailor::adjust_numeric_calibration(method = tune())
reg_max <- tailor::tailor() |>
tailor::adjust_numeric_range(upper_limit = tune())
}
glmn_spec <- parsnip::linear_reg(penalty = tune(), mixture = tune()) |>
parsnip::set_engine("glmnet")
reg_sim_plist <- tibble::tibble(
outcome = double(0),
.pred = double(0),
.row = integer(0)
)
puromycin_plist <- tibble::tibble(
rate = puromycin$rate[0],
.pred = puromycin$rate[0],
.row = integer(0)
)
# ------------------------------------------------------------------------------
surv_0 <- structure(
numeric(0),
type = "right",
dim = c(0L, 2L),
dimnames = list(NULL, c("time", "status")),
class = "Surv"
)
pred_0 <- tibble::tibble(
.eval_time = numeric(0),
.pred_survival = numeric(0)
)
pred_dyn_0 <- tibble::tibble(
.eval_time = numeric(0),
.pred_survival = numeric(0),
.weight_censored = numeric(0)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.