Nothing
#' Compute the balance table.
#'
#' Extract the balance table from [ps], [dx.wts], and [mnps] objects
#'
#' `bal.table` is a generic function for extracting balance
#' tables from [ps] and [dx.wts] objects. These objects
#' usually have several sets of candidate weights, one for an unweighted
#' analysis and perhaps several `stop.methods`. `bal.table`
#' will return a table for each set of weights combined into a list. Each list
#' component will be named as given in the `x`, usually the name of the
#' `stop.method`. The balance table labeled \dQuote{unw} indicates the
#' unweighted analysis.
#'
#' @param x A [ps] or [dx.wts] object.
#' @param digits The number of digits that the numerical entries
#' should be rounded to. Default: 3.
#' @param collapse.to For `mnps` ATE objects, the comparisons
#' can be given for all pairs (default), summarized by pre-treatment
#' covariate and stop.method, or as a single summary for each stop.method.
#' @param subset.var Eliminate all but a specified subset of covariates.
#' @param subset.treat Subset to either all pairs that include a specified
#' treatment or a single pair of treatments.
#' @param subset.stop.method Subset to either all pairs that include a specified
#' treatment or a single pair of treatments.
#' @param es.cutoff Subsets to comparisons with absolute ES values bigger than
#' `es.cutoff`. Default: 0.
#' @param ks.cutoff Subsets to comparisons with KS values bigger than
#' `ks.cutoff`. Default: 0.
#' @param p.cutoff Subsets to comparisons with t- or chi-squared p-values
#' no bigger than `p.cutoff`. Default: 1.
#' @param ks.p.cutoff Subsets to comparisons with t- or chi-squared p-values
#' no bigger than `p.cutoff`. Default: 1.
#' @param timePeriods Used to subset times for iptw fits.
#' @param ... Additional arugments.
#'
#' @return Returns a data frame containing the balance information.
#' * `tx.mn` The mean of the treatment group.
#' * `tx.sd` The standard deviation of the treatment group.
#' * `ct.mn` The mean of the control group.
#' * `ct.sd` The standard deviation of the control group.
#' * `std.eff.sz` The standardized effect size, (tx.mn-ct.mn)/tx.sd.
#' If tx.sd is small or 0, the standardized effect size can be large or INF.
#' Therefore, standardized effect sizes greater than 500 are set to NA.
#' * `stat` The t-statistic for numeric variables and the chi-square
#' statistic for continuous variables.
#' * `p` The p-value for the test associated with `stat`
#' `ks` The KS statistic.
#' * `ks.pval` The KS p-value computed using the analytic approximation,
#' which does not necessarily work well with a lot of ties.
#'
#' @export
#' @md
bal.table <- function(x,
digits = 3,
collapse.to = c("pair","covariate","stop.method")[1],
subset.var = NULL,
subset.treat = NULL,
subset.stop.method = NULL,
es.cutoff = 0,
ks.cutoff = 0,
p.cutoff = 1,
ks.p.cutoff = 1,
timePeriods = NULL,
...){
if(!(class(x)[1] %in% c("mnps", "iptw", "mniptw"))){
bal.tab <- bal.table.ps(x, digits = digits)
return(bal.tab)
}
else if(class(x)[1] == "iptw"){
if(is.null(timePeriods)) timePeriods <- 1:length(x$psList)
for(i in timePeriods){
cat("Balance at time ", x$uniqueTimes[i], ":\n")
print(bal.table.ps(x$psList[[i]], digits = digits))
cat("\n")
}
}
else if(class(x)[1] == "mnps"){
bal.table.mnps(x=x, digits = digits, collapse.to = collapse.to, subset.var = subset.var,
subset.treat = subset.treat, subset.stop.method = subset.stop.method,
es.cutoff = es.cutoff, p.cutoff = p.cutoff, ks.p.cutoff = ks.p.cutoff, ...)
}
else if(class(x)[1] == "mniptw"){
if(is.null(timePeriods)) timePeriods <- 1:length(x$psList)
for(i in timePeriods){
cat("Balance at time ", x$uniqueTimes[i], ":\n")
print(bal.table.mnps(x$psList[[i]], digits = digits, collapse.to = collapse.to,
subset.var = subset.var, subset.treat = subset.treat,
subset.stop.method = subset.stop.method, es.cutoff = es.cutoff,
p.cutoff = p.cutoff, ks.p.cutoff = ks.p.cutoff, ...))
cat("\n")
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.