R/testRetestCES.R

Defines functions print.testRetestCES testRetestCES

Documented in print.testRetestCES testRetestCES

#' Test-Retest Coefficient of Equivalence & Stability
#'
#' The testRetestCES function computes the test-retest Coefficient of
#' Equivalence and Stability (Schmidt, Le & Ilies, 2003).
#'
#' This function computes the test-retest Coefficient of Equivalence and
#' Stability (CES) as described in Schmidt, Le & Ilies (2003). Note that this
#' function only computes the test-retest CES for a scale that is administered
#' twice and split into two parallel halves post-hoc (this procedure is
#' explained on page 210, and the equations that are used, 16 and 17a are
#' explained on page 212).
#'
#' @param dat A dataframe. For testRetestCES, this dataframe must contain the
#' items in the scale at both measurement moments. If no dataframe is
#' specified, a dialogue will be launched to allow the user to select an SPSS
#' datafile. If only one dataframe is specified, either the items have to be
#' ordered chronologically (i.e. first all items for the first measurement,
#' then all items for the second measurement), or the vector 'moments' has to
#' be used to indicate, for each item, to which measurement moment it belongs.
#' The number of columns in this dataframe MUST be even! Note that instead of
#' providing this dataframe, the items of each measurement moment can be
#' provided separately in testDat and retestDat as well.
#' @param moments Used to indicate to which measurement moment each item in
#' 'dat' belongs; should be a vector with the same length as dat has columns,
#' and with two possible values (e.g. 1 and 2).
#' @param testDat,retestDat Dataframes with the items for each measurement
#' moment: note that the items have to be in the same order (unless sortItems
#' is TRUE).
#' @param parallelTests A vector indicating which items belong to which
#' parallel test; like the moments vector, this should have two possible values
#' (e.g. 1 and 2).  Alternatively, it can be character value with 'means' or
#' 'variances'; in this case, parallelSubscales will be used to create roughly
#' parallel halves.
#' @param sortItems If true, the columns (items) in each dataframe are ordered
#' alphabetically before starting. This can be convenient to ensure that the
#' order of the items at each measurement moment is the same.
#' @param convertToNumeric When TRUE, the function will attempt to convert all
#' vectors in the dataframes to numeric.
#' @param digits Number of digits to print.
#' @param x The object to print
#' @param ... Ignored.
#'
#' @return
#'
#' An object with the input and several output variables. Most notably:
#' \item{input}{Input specified when calling the function}
#' \item{intermediate}{Intermediate values and objects computed to get to the
#' final results} \item{output$testRetestCES}{The value of the test-retest
#' Coefficient of Equivalence and Stability.}
#' @note This function uses equations 16 and 17 on page 212 of Schmidt, Le &
#' Ilies (2003): in other words, this function assumes that one scale is
#' administered twice. If you'd like the computation for two different but
#' parellel scales/measures to be implemented, please contact me.
#' @references Schmidt, F. L., Le, H., & Ilies, R. (2003) Beyond Alpha: An
#' Empirical Examination of the Effects of Different Sources of Measurement
#' Error on Reliability Estimates for Measures of Individual-differences
#' Constructs. Psychological Methods, 8(2), 206-224. <doi:10/dzmk7n>
#' @keywords utilities univar
#' @examples
#'
#' \dontrun{
#' ### This will prompt the user to select an SPSS file
#' testRetestCES();
#' }
#'
#' ### Load data from simulated dataset testRetestSimData (which
#' ### satisfies essential tau-equivalence).
#' data(testRetestSimData);
#'
#' ### The first column is the true score, so it's excluded in this example.
#' exampleData <- testRetestSimData[, 2:ncol(testRetestSimData)];
#'
#' ### Compute test-retest alpha coefficient
#' testRetestCES(exampleData);
#'
#' @rdname testRetestCES
#' @export
testRetestCES <- function(dat = NULL, moments = NULL,
                          testDat = NULL, retestDat = NULL,
                          parallelTests = 'means',
                          sortItems = FALSE, convertToNumeric = TRUE,
                          digits=4) {

  res <- list(input = list(dat = dat,
                           moments = moments,
                           testDat = testDat,
                           retestDat = retestDat,
                           parallelTests = parallelTests,
                           sortItems = sortItems,
                           convertToNumeric = convertToNumeric,
                           digits = digits),
              intermediate = list(), output = list());

  ### If no dataframe was specified, load it from an SPSS file
  if (is.null(dat) && is.null(testDat) && is.null(retestDat)) {
    dat <- getData(errorMessage=paste0("No dataframe specified, and no valid datafile selected in ",
                                       "the dialog I then showed to allow selection of a dataset.",
                                       "Original error:\n\n[defaultErrorMessage]"),
                   use.value.labels=FALSE);
  }

  if (!is.null(dat)) {
    if (is.null(res$intermediate$moments)) {
      if (is.odd(ncol(dat))) {
        stop("If argument 'dat' is provided, this dataframe is split into two. ",
             "Therefore, it must have an even number of columns.");
      }
      res$intermediate$moments <- rep(c(0,1), each=(ncol(dat))/2);
    }
    res$intermediate$momentsBoolean <- (res$intermediate$moments == min(res$intermediate$moments));
    res$intermediate$testDat <- testDat <- dat[, res$intermediate$momentsBoolean];
    res$intermediate$retestDat <- retestDat <- dat[, !res$intermediate$momentsBoolean];
  }
  else if (xor(is.null(testDat), is.null(retestDat))) {
    stop("Provide both testDat and retestDat; or, if you have all scores in one ",
         "dataframe, provide it as 'dat' argument!");
  }

  if (sortItems) {
    res$intermediate$testDat <- testDat <- testDat[, order(names(testDat))];
    res$intermediate$retestDat <- retestDat <- retestDat[, order(names(retestDat))];
  }

  if (ncol(testDat) != ncol(retestDat)) {
    stop("The dataframe for each measurement moment must have the same number of ",
         "items. The current version of testRetestCES only supports compuring the ",
         "test-retest CES for a scale that is split into parallel halves post-hoc; ",
         "see Schmidt, Le & Ilies (2003), pages 210 and 212.");
  }

  if (ncol(testDat) < 2) {
    stop("The scale at each measurement moment must contain at least two ",
         "items to split into subscales. The scale you specified has only ",
         ncol(testDat), " items.");
  }

  if (convertToNumeric) {
    res$intermediate$testDat <- testDat <- massConvertToNumeric(testDat);
    res$intermediate$retestDat <- retestDat <- massConvertToNumeric(retestDat);
  }

  ### So, now we have testDat with the data from the first administration,
  ### and retestDat with the data from the second administration. We now need
  ### to split this into the two parallel subscales. Ideally, the user provided
  ### a vector that distinguishes the items; alternatively, we will split the
  ### scale based on either the means or the variances.

  ### Regardless of whether it's necessary, we'll order this 'automated'
  ### generation of the parallel subscales.
  res$intermediate$parallelSubscales <-
    parallelSubscales(list(time1=res$intermediate$testDat,
                           time2=res$intermediate$retestDat));

  if (tolower(parallelTests) == "means") {
    res$intermediate$in_a1 <-
      res$intermediate$parallelSubscales$output$byMeans$in_a1;
    res$intermediate$in_a2 <-
      res$intermediate$parallelSubscales$output$byMeans$in_a2;
  }
  else if (tolower(parallelTests) == "variances") {
    res$intermediate$in_a1 <-
      res$intermediate$parallelSubscales$output$byVariances$in_a1;
    res$intermediate$in_a2 <-
      res$intermediate$parallelSubscales$output$byVariances$in_a2;
  }
  else if (length(parallelTests) > 1) {
    res$intermediate$in_a1 <- parallelTests == min(parallelTests);
    res$intermediate$in_a2 <- parallelTests != min(parallelTests);
  }
  else {
    stop("Argument 'parallelTests' must be either a vector identifying the two ",
         "parallel tests, or one of 'means' or 'variances'.");
  }

  ### Now we get the final four components (A at time1, A at time2,
  ### B at time1, and B at time2).
  res$intermediate$a1_time1.dat <- testDat[res$intermediate$in_a1];
  res$intermediate$a1_time2.dat <- retestDat[res$intermediate$in_a1];
  res$intermediate$a2_time1.dat <- testDat[res$intermediate$in_a2];
  res$intermediate$a2_time2.dat <- retestDat[res$intermediate$in_a2];

  ### Now we compute the actual scale scores from these separate items
  res$intermediate$a1_time1 <- rowSums(res$intermediate$a1_time1.dat);
  res$intermediate$a1_time2 <- rowSums(res$intermediate$a1_time2.dat);
  res$intermediate$a2_time1 <- rowSums(res$intermediate$a2_time1.dat);
  res$intermediate$a2_time2 <- rowSums(res$intermediate$a2_time2.dat);

  ### Compute the subscale means and variances to enable inspection of the
  ### assumption that the subscales are parallel.
  res$output$a1_time1_mean     <- mean(res$intermediate$a1_time1);
  res$output$a2_time1_mean     <- mean(res$intermediate$a2_time1);
  res$output$a1_time2_mean     <- mean(res$intermediate$a1_time2);
  res$output$a2_time2_mean     <- mean(res$intermediate$a2_time2);
  res$output$a1_time1_variance <- stats::var(res$intermediate$a1_time1);
  res$output$a2_time1_variance <- stats::var(res$intermediate$a2_time1);
  res$output$a1_time2_variance <- stats::var(res$intermediate$a1_time2);
  res$output$a2_time2_variance <- stats::var(res$intermediate$a2_time2);

  ### Store complete subscale variances; first the scale itself
  res$intermediate$A_time1 <- rowSums(testDat);
  res$intermediate$A_time2 <- rowSums(retestDat);
  ### The variance
  res$intermediate$A_time1.var <- stats::var(res$intermediate$A_time1);
  res$intermediate$A_time2.var <- stats::var(res$intermediate$A_time2);

  ### Store covariance and correlation matrices
  res$intermediate$cov <- stats::cov(
    cbind(res$intermediate$a1_time1,
          res$intermediate$a1_time2,
          res$intermediate$a2_time1,
          res$intermediate$a2_time2));
  res$intermediate$cor <- stats::cor(
    cbind(res$intermediate$a1_time1,
          res$intermediate$a1_time2,
          res$intermediate$a2_time1,
          res$intermediate$a2_time2));
  colnames(res$intermediate$cor) <- rownames(res$intermediate$cor) <-
    colnames(res$intermediate$cov) <- rownames(res$intermediate$cov) <-
    c('a1_time1', 'a1_time2', 'a2_time1', 'a2_time2');

  ### Check whether the two subscales have equal numbers of items
  if (ncol(res$intermediate$a1_time1.dat) == ncol(res$intermediate$a2_time1.dat)) {
    ### Equation 16 on page 212 of Schmidt, Le & Ilies (2003) defines the
    ### Coefficient of Equivalence and Stability (CES) as 2 times the sum of
    ### the covariance between a1_time1 & a1_time2 and the covariance between
    ### a1_time2 and a2_time1, divided by the product of the square roots of
    ### the variances of A_time1 and A_time2.

    res$output$testRetestCES <- (2 *
                                 (res$intermediate$cov['a1_time1', 'a2_time2'] +
                                  res$intermediate$cov['a1_time2', 'a2_time1'])) /
                                (sqrt(res$intermediate$A_time1.var) *
                                 sqrt(res$intermediate$A_time2.var));

    res$output$usedEquation <- "Equation 16 on page 212 of Schmidt, Le & Ilies (2003)"
  }
  else {
    ### Equation 17a on page 212 of Schmidt, Le & Ilies (2003) defines the
    ### Coefficient of Equivalence and Stability (CES) as the sum of the
    ### covariance between a1_time1 & a1_time2 and the covariance between
    ### a1_time2 and a2_time1, divided by the product of 2, p1, p2, the
    ### variance of sqrt(A_time1) and sqrt(A_time2), where p1 and p2 represent
    ### the proportions of items of the a1 and a2 subscales, respectively.

    res$intermediate$p1 <- p1 <- ncol(res$intermediate$a1_time1.dat) / ncol(testDat);
    res$intermediate$p2 <- p2 <-  ncol(res$intermediate$a2_time1.dat) / ncol(testDat);

    res$output$testRetestCES <- (res$intermediate$cov['a1_time1', 'a2_time2'] +
                                 res$intermediate$cov['a1_time2', 'a2_time1']) /
                                (2 * p1 * p2 * (sqrt(res$intermediate$A_time1.var) *
                                                sqrt(res$intermediate$A_time2.var)));

    res$output$usedEquation <- "Equation 17a on page 212 of Schmidt, Le & Ilies (2003)"
  }

  class(res) <- 'testRetestCES';
  return(res);

}

#' @rdname testRetestCES
#' @method print testRetestCES
#' @export
print.testRetestCES <- function(x, digits=x$input$digits, ...) {
  subscaleGeneration <- x$input$parallelTests;
  automatically <- "automatically ";
  if (length(subscaleGeneration) > 1) {
    subscaleGeneration <- "manually specified subscales";
    automatically <- "";
  }

  cat(paste0("Coefficient of Equivalence and Stability: ", round(x$output$testRetestCES, digits=digits), "\n\n",
             "To help assess whether the subscales (", automatically,
             "generated using ", subscaleGeneration,
             ") are parallel, here are the means and variances:\n",
             "Mean subscale a1, time 1: ", round(x$output$a1_time1_mean, digits=digits),
             " (variance = ", round(x$output$a1_time1_variance, digits=digits), ")\n",
             "Mean subscale a2, time 1: ", round(x$output$a2_time1_mean, digits=digits),
             " (variance = ", round(x$output$a2_time1_variance, digits=digits), ")\n",
             "Mean subscale a1, time 2: ", round(x$output$a1_time2_mean, digits=digits),
             " (variance = ", round(x$output$a1_time2_variance, digits=digits), ")\n",
             "Mean subscale a2, time 2: ", round(x$output$a2_time2_mean, digits=digits),
             " (variance = ", round(x$output$a2_time2_variance, digits=digits), ")\n"));
}

Try the ufs package in your browser

Any scripts or data that you put into this service are public.

ufs documentation built on May 29, 2024, 10:30 a.m.