Nothing
rm(list = ls())
library(testthat)
library(ungroup)
# ----------------------------------------------
# Tests
test_pclm_1D <- function(M) {
fv <- fitted(M)
lower <- M$ci[[1]]
upper <- M$ci[[2]]
test_that("Test pclm", {
expect_s3_class(M, "pclm")
expect_output(print(M))
expect_output(print(summary(M)))
expect_false(is.null(plot(M)))
expect_true(all(fv >= 0))
expect_identical(length(fv), length(lower))
expect_identical(length(upper), length(lower))
if (is.null(M$input$offset)) {
expect_identical(round(sum(fv), 1), round(sum(M$input$y), 1))
}
})
}
# ----------------------------------------------
# PCLM-1D
x <- c(0, 1, seq(5, 85, by = 5))
y <- c(294, 66, 32, 44, 170, 284, 287, 293, 361, 600, 998,
1572, 2529, 4637, 6161, 7369, 10481, 15293, 39016)
offset <- c(114, 440, 509, 492, 628, 618, 576, 580, 634, 657,
631, 584, 573, 619, 530, 384, 303, 245, 249) * 1000
nlast <- 26 # the size of the last interval
M1 <- pclm(x, y, nlast)
M2 <- pclm(x, y, nlast, out.step = 0.5)
M3 <- pclm(x, y, nlast, out.step = 0.5,
control = list(lambda = NA, kr = 6, deg = 3))
M4 <- pclm(x, y, nlast, offset, out.step = 0.4,
control = list(lambda = 1, kr = 8, deg = 3))
ungroupped_Ex <- pclm(x, y = offset, nlast, offset = NULL)$fitted # ungroupped offset data
M5 <- pclm(x, y, nlast, offset = ungroupped_Ex)
for (i in 1:5) test_pclm_1D(get(paste0("M", i)))
# ----------------------------------------------
# test residuals
test_that("Residuals", {
expect_output(print(residuals(M1)))
expect_output(print(residuals(M2)))
expect_output(print(residuals(M3)))
expect_error(residuals(M4))
})
# ----------------------------------------------
# Test error messages
expect_error(pclm(x = c("a", x), y, nlast))
expect_error(pclm(x = c(NA, x), y, nlast))
expect_error(pclm(x = c(1, x), y, nlast))
expect_error(pclm(x = c(1, x), c(y, NA), nlast))
expect_error(pclm(x = c(x, 90), c(y, -10), nlast))
expect_error(pclm(x, y, nlast = -10))
expect_error(pclm(x, y, nlast = c(1, 100)))
expect_error(pclm(x, y, nlast, c(offset, 1)))
expect_error(pclm(x, y, nlast, ci.level = -0.05))
expect_error(pclm(x, y, nlast, out.step = -1))
expect_error(pclm(x, y, nlast, control = c(a = 1))) #****
# expect_error(pclm(x, y, nlast, control = list(lambda = c(0, 1))))
expect_error(pclm(x, y, nlast, control = list(lambda = -1)))
expect_error(pclm(x, y, nlast, control = list(kr = -1.5)))
expect_error(pclm(x, y, nlast, control = list(deg = -1.5)))
expect_error(pclm(x, y, nlast, control = list(opt.method = "AAIC")))
expect_error(pclm(x, y, nlast, control = list(max.iter = 5)))
expect_error(pclm(x, y, nlast, control = list(tol = -.1)))
# ----------------------------------------------
# Test warnings
expect_warning(pclm(x, y, nlast, offset, out.step = 0.32))
# ----------------------------------------------
# Test data
expect_output(print(ungroup.data))
# ----------------------------------------------
test_that("The model works even if the first bin is zero", {
x0 <- c(14:19, seq(20, 50, by = 5))
y0 <- c(0, 5, 27, 154, 404, 826, 15596, 31266, 32973, 28942, 14290, 1988, 25)
M0 <- pclm(x = x0, y = y0, nlast = 5)
test_pclm_1D(M0)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.