predict.EBRmodel: Predict Method for Ensemble of Binary Relevance

Description Usage Arguments Value See Also Examples

View source: R/method_ebr.R

Description

This method predicts values based upon a model trained by ebr.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
## S3 method for class 'EBRmodel'
predict(
  object,
  newdata,
  vote.schema = "maj",
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = getOption("utiml.cores", 1),
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'EBRmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

vote.schema

Define the way that ensemble must compute the predictions. The default valid options are: c("avg", "maj", "max", "min"). If NULL then all predictions are returned. (Default: 'maj')

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

The number of cores to parallelize the training. Values higher than 1 require the parallel package. (Default: options("utiml.cores", 1))

seed

An optional integer used to set the seed. This is useful when the method is run in parallel. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Ensemble of Binary Relevance (EBR) Compute Multi-label Predictions

Examples

1
2
3
4
5
6
7
8
9
# Predict SVM scores
model <- ebr(toyml)
pred <- predict(model, toyml)

# Predict SVM bipartitions running in 2 cores
pred <- predict(model, toyml, prob = FALSE, cores = 2)

# Return the classes with the highest score
pred <- predict(model, toyml, vote = 'max')

utiml documentation built on May 31, 2021, 9:09 a.m.