predict.NSmodel: Predict Method for Nested Stacking

Description Usage Arguments Value See Also Examples

View source: R/method_ns.R

Description

This function predicts values based upon a model trained by ns. The scores of the prediction was adapted once this method uses a correction of labelsets to predict only classes present on training data. To more information about this implementation see subset_correction.

Usage

1
2
3
4
5
6
7
8
9
## S3 method for class 'NSmodel'
predict(
  object,
  newdata,
  probability = getOption("utiml.use.probs", TRUE),
  ...,
  cores = NULL,
  seed = getOption("utiml.seed", NA)
)

Arguments

object

Object of class 'NSmodel'.

newdata

An object containing the new input data. This must be a matrix, data.frame or a mldr object.

probability

Logical indicating whether class probabilities should be returned. (Default: getOption("utiml.use.probs", TRUE))

...

Others arguments passed to the base algorithm prediction for all subproblems.

cores

Ignored because this method does not support multi-core.

seed

An optional integer used to set the seed. (Default: options("utiml.seed", NA))

Value

An object of type mlresult, based on the parameter probability.

See Also

Nested Stacking (NS)

Examples

1
2
3
4
5
6
7
8
9
model <- ns(toyml, "RANDOM")
pred <- predict(model, toyml)


# Predict SVM bipartitions
pred <- predict(model, toyml, probability = FALSE)

# Passing a specif parameter for SVM predict algorithm
pred <- predict(model, toyml, na.action = na.fail)

utiml documentation built on May 31, 2021, 9:09 a.m.