Nothing
hartley.test <- function (formula, data, size = "mean", alpha = 0.05, na.rm = TRUE, verbose = TRUE)
{
data <- model.frame(formula, data)
dp <- as.character(formula)
DNAME <- paste(dp[[2L]], "and", dp[[3L]])
METHOD <- "Hartley's Maximum F-Ratio Test"
if (na.rm) {
completeObs <- complete.cases(data)
data <- data[completeObs, ]
}
if (any(colnames(data) == dp[[3L]]) == FALSE)
stop("The name of group variable does not match the variable names in the data. The group variable must be one factor.")
if (any(colnames(data) == dp[[2L]]) == FALSE)
stop("The name of response variable does not match the variable names in the data.")
y = data[[dp[[2L]]]]
group = data[[dp[[3L]]]]
if (!(is.factor(group) | is.character(group)))
stop("The group variable must be a factor or a character.")
if (is.character(group))
group <- as.factor(group)
if (!is.numeric(y))
stop("The response must be a numeric variable.")
if (is.list(y)) {
if (length(y) < dp[[2L]])
stop("'y' must be a list with at least 2 elements")
}
n <- length(y)
x.levels <- levels(factor(group))
k <- length(x.levels)
ni<- as.numeric(tapply(y, group, length))
vars <- tapply(y, group, var)
vars.max <- max(vars)
vars.min <- min(vars)
if (size == "mean"){ ni.optimum <- mean(ni)
}else if (size == "harmonic"){ ni.optimum <- harmonic.mean(ni)
}else if (size == "maxn"){ ni.optimum <- max(ni)
}else if (size == "minvar"){ ni.optimum <- ni[which.min(vars)]
}else stop("Please correct size argument.")
if(any(ni!=n/k)) warning("Hartley's maximum F-ratio test may not be precise for imbalanced designs.")
H.test<- vars.max/vars.min
df<- ni.optimum-1
p.value<- pmaxFratio(H.test, df, k, lower.tail = F)
if (verbose) {
cat("\n", "", METHOD, paste("(alpha = ", alpha, ")",
sep = ""), "\n", sep = " ")
cat("-------------------------------------------------------------",
"\n", sep = " ")
cat(" data :", DNAME, "\n\n", sep = " ")
cat(" statistic :", H.test, "\n", sep = " ")
cat(" df :", df, "\n", sep = " ")
cat(" p.value :", p.value, "\n\n", sep = " ")
cat(if (p.value > alpha) {
" Result : Variances are homogeneous."
}
else {
" Result : Variances are not homogeneous."
}, "\n")
cat("-------------------------------------------------------------",
"\n\n", sep = " ")
}
result <- list()
result$statistic <- H.test
result$parameter <- df
result$p.value <- p.value
result$alpha <- alpha
result$method <- METHOD
result$data <- data
result$formula <- formula
invisible(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.