Description Usage Arguments Value Author(s) Examples
Estimate variance components by MINQUE method, allowing multiple iterations
1 | minque(y, X, Kerns, n.iter = 1, eps = 0.001)
|
y |
Numeric vector of traits. Only continuous trait currently allowed. |
X |
Matrix of covariates (columns) for subjects (rows), matching subjects in the trait (y) vector. |
Kerns |
List of kernel matrices: a kernel matrix for each variance compenent. The last kernel matrix in the list (an identity matrix) is for the residual variance component. |
n.iter |
Number of minque iterations |
eps |
Default small positive value for non-positive vc estimates within iterations. |
List with estimates of variance components (vc), covariate regression coefficients (beta), and residuals of model fit.
JP Sinnwell, DJ Schaid
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | data(vcexample)
nvc <- 1+length(unique(doseinfo[,2]))
id <- 1:nrow(dose)
## vcs for genetic kernel matrices
Kerns <- vector("list", length=nvc)
for(i in 1:(nvc-1)){
Kerns[[i]] <- kernel_linear(dose[,grep(i, doseinfo[,2])])
rownames(Kerns[[i]]) <- id
colnames(Kerns[[i]]) <- id
}
## vc for residual variance
Kerns[[nvc]] <- diag(nrow(dose))
rownames(Kerns[[nvc]]) <- id
colnames(Kerns[[nvc]]) <- id
prefit <- minque(response, covmat, Kerns, n.iter=2)
prefit[1]
prefit[2]
fit <- vcpen(response, covmat, Kerns, vc_init = prefit$vc)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.