specpool: Extrapolated Species Richness in a Species Pool


The functions estimate the extrapolated species richness in a species pool, or the number of unobserved species. Function specpool is based on incidences in sample sites, and gives a single estimate for a collection of sample sites (matrix). Function estimateR is based on abundances (counts) on single sample site.


specpool(x, pool, smallsample = TRUE)
estimateR(x, ...)
specpool2vect(X, index = c("jack1","jack2", "chao", "boot","Species"))
poolaccum(x, permutations = 100, minsize = 3)
estaccumR(x, permutations = 100, parallel = getOption("mc.cores"))
## S3 method for class 'poolaccum'
summary(object, display, alpha = 0.05, ...)
## S3 method for class 'poolaccum'
plot(x, alpha = 0.05, type = c("l","g"), ...)



Data frame or matrix with species data or the analysis result for plot function.


A vector giving a classification for pooling the sites in the species data. If missing, all sites are pooled together.


Use small sample correction (N-1)/N, where N is the number of sites within the pool.

X, object

A specpool result object.


The selected index of extrapolated richness.


Usually an integer giving the number permutations, but can also be a list of control values for the permutations as returned by the function how, or a permutation matrix where each row gives the permuted indices.


Smallest number of sampling units reported.


Number of parallel processes or a predefined socket cluster. With parallel = 1 uses ordinary, non-parallel processing. The parallel processing is done with parallel package.


Indices to be displayed.


Level of quantiles shown. This proportion will be left outside symmetric limits.


Type of graph produced in xyplot.


Other parameters (not used).


Many species will always remain unseen or undetected in a collection of sample plots. The function uses some popular ways of estimating the number of these unseen species and adding them to the observed species richness (Palmer 1990, Colwell & Coddington 1994).

The incidence-based estimates in specpool use the frequencies of species in a collection of sites. In the following, S_P is the extrapolated richness in a pool, S_0 is the observed number of species in the collection, a1 and a2 are the number of species occurring only in one or only in two sites in the collection, p_i is the frequency of species i, and N is the number of sites in the collection. The variants of extrapolated richness in specpool are:

Chao S_P = S_0 + a1^2/(2*a2) * (N-1)/N
Chao bias-corrected S_P = S_0 + a1*(a1-1)/(2*(a2+1)) * (N-1)/N
First order jackknife S_P = S_0 + a1*(N-1)/N
Second order jackknife S_P = S_0 + a1*(2*N-3)/N - a2*(N-2)^2/N/(N-1)
Bootstrap S_P = S_0 + Sum (1-p_i)^N

specpool normally uses basic Chao equation, but when there are no doubletons (a2=0) it switches to bias-corrected version. In that case the Chao equation simplifies to S_0 + (N-1)/N * a1*(a1-1)/2.

The abundance-based estimates in estimateR use counts (numbers of individuals) of species in a single site. If called for a matrix or data frame, the function will give separate estimates for each site. The two variants of extrapolated richness in estimateR are bias-corrected Chao and ACE (O'Hara 2005, Chiu et al. 2014). The Chao estimate is similar as the bias corrected one above, but a_i refers to the number of species with abundance i instead of number of sites, and the small-sample correction is not used. The ACE estimate is defined as:

ACE S_P = S_abund + S_rare/C_ace + a1/C_ace * gamma^2
where C_{ace} = 1- a1/N_{rare}
gamma^2 = max(S_rare/C_ace (sum[i=1..10] i*(i-1)*a_i) / N_rare/(N_rare-1) -1 , 0)

Here a_i refers to number of species with abundance i and S_rare is the number of rare species, S_abund is the number of abundant species, with an arbitrary threshold of abundance 10 for rare species, and N_rare is the number of individuals in rare species.

Functions estimate the standard errors of the estimates. These only concern the number of added species, and assume that there is no variance in the observed richness. The equations of standard errors are too complicated to be reproduced in this help page, but they can be studied in the R source code of the function and are discussed in the vignette that can be read with the browseVignettes("vegan"). The standard error are based on the following sources: Chiu et al. (2014) for the Chao estimates and Smith and van Belle (1984) for the first-order Jackknife and the bootstrap (second-order jackknife is still missing). For the variance estimator of S_ace see O'Hara (2005).

Functions poolaccum and estaccumR are similar to specaccum, but estimate extrapolated richness indices of specpool or estimateR in addition to number of species for random ordering of sampling units. Function specpool uses presence data and estaccumR count data. The functions share summary and plot methods. The summary returns quantile envelopes of permutations corresponding the given level of alpha and standard deviation of permutations for each sample size. NB., these are not based on standard deviations estimated within specpool or estimateR, but they are based on permutations. The plot function shows the mean and envelope of permutations with given alpha for models. The selection of models can be restricted and order changes using the display argument in summary or plot. For configuration of plot command, see xyplot.


Function specpool returns a data frame with entries for observed richness and each of the indices for each class in pool vector. The utility function specpool2vect maps the pooled values into a vector giving the value of selected index for each original site. Function estimateR returns the estimates and their standard errors for each site. Functions poolaccum and estimateR return matrices of permutation results for each richness estimator, the vector of sample sizes and a table of means of permutations for each estimator.


The functions are based on assumption that there is a species pool: The community is closed so that there is a fixed pool size S_P. In general, the functions give only the lower limit of species richness: the real richness is S >= S_P, and there is a consistent bias in the estimates. Even the bias-correction in Chao only reduces the bias, but does not remove it completely (Chiu et al. 2014).

Optional small sample correction was added to specpool in vegan 2.2-0. It was not used in the older literature (Chao 1987), but it is recommended recently (Chiu et al. 2014).

See http://viceroy.eeb.uconn.edu/EstimateS for a more complete (and positive) discussion and alternative software for some platforms.


Bob O'Hara (estimateR) and Jari Oksanen.


Chao, A. (1987). Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791.

Chiu, C.H., Wang, Y.T., Walther, B.A. & Chao, A. (2014). Improved nonparametric lower bound of species richness via a modified Good-Turing frequency formula. Biometrics 70, 671–682.

Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation. Phil. Trans. Roy. Soc. London B 345, 101–118.

O'Hara, R.B. (2005). Species richness estimators: how many species can dance on the head of a pin? J. Anim. Ecol. 74, 375–386.

Palmer, M.W. (1990). The estimation of species richness by extrapolation. Ecology 71, 1195–1198.

Smith, E.P & van Belle, G. (1984). Nonparametric estimation of species richness. Biometrics 40, 119–129.

See Also

veiledspec, diversity, beals, specaccum.


pool <- specpool(dune, Management)
op <- par(mfrow=c(1,2))
boxplot(specnumber(dune) ~ Management, col="hotpink", border="cyan3",
boxplot(specnumber(dune)/specpool2vect(pool) ~ Management, col="hotpink",
 border="cyan3", notch=TRUE)
## Accumulation model
pool <- poolaccum(BCI)
summary(pool, display = "chao")
## Quantitative model

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

All documentation is copyright its authors; we didn't write any of that.