Nothing
`calibrate.cca` <-
function(object, newdata, rank = "full", ...)
{
## inversion solve(b) requires a square matrix, and we should
## append imaginary dims to get those in dbrda with negative
## constrained eigenvalues. Work is need to to verify this can be
## done, and therefore we just disable calibrate with negative
## eigenvalues in constraints.
if (inherits(object, "dbrda") && object$CCA$poseig < object$CCA$qrank)
stop("cannot be used with 'dbrda' with imaginary constrained dimensions")
if (!is.null(object$pCCA))
stop("does not work with conditioned (partial) models")
if (is.null(object$CCA) || object$CCA$rank == 0)
stop("needs constrained model")
if (object$CCA$rank < object$CCA$qrank)
stop("rank of constraints is higher than rank of dependent data")
if (rank != "full")
rank <- min(rank, object$CCA$rank)
else
rank <- object$CCA$rank
if (missing(newdata))
wa <- object$CCA$wa
else
wa <- predict(object, type="wa", newdata=newdata)
qrank <- object$CCA$qrank
b <- (coef(object))[object$CCA$QR$pivot[1:qrank], , drop=FALSE]
b <- solve(b)
pred <- wa[ , 1:rank, drop=FALSE] %*% b[1:rank, , drop =FALSE]
envcen <- object$CCA$envcentre[object$CCA$QR$pivot]
envcen <- envcen[1:object$CCA$qrank]
sweep(pred, 2, envcen, "+")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.