Nothing
# Wallace EcoMod: a flexible platform for reproducible modeling of
# species niches and distributions.
#
# part_spat.R
# File author: Wallace EcoMod Dev Team. 2023.
# --------------------------------------------------------------------------
# This file is part of the Wallace EcoMod application
# (hereafter “Wallace”).
#
# Wallace is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# Wallace is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Wallace. If not, see <http://www.gnu.org/licenses/>.
# --------------------------------------------------------------------------
#
part_spat_module_ui <- function(id) {
ns <- shiny::NS(id)
tagList(
selectInput(ns("partitionSpatSel"), "Options Available:",
choices = list("None selected" = '',
"Block (k = 4)" = "block",
"Checkerboard 1 (k = 2)" = "cb1",
"Checkerboard 2 (k = 4)" = "cb2")), # Check default (no selected)
conditionalPanel(sprintf("input['%1$s'] == 'cb1' | input['%1$s'] == 'cb2'",
ns("partitionSpatSel")),
numericInput(ns("aggFact"), label = "Aggregation Factor",
value = 2, min = 2)),
tags$div(
title = "Apply selection to ALL species loaded",
checkboxInput(ns("batch"), label = strong("Batch"), value = FALSE) # Check default (value = FALSE)
),
actionButton(ns("goPartitionSpat"), "Partition")
)
}
part_spat_module_server <- function(input, output, session, common) {
logger <- common$logger
spp <- common$spp
allSp <- common$allSp
curSp <- common$curSp
bgMask <- common$bgMask
observeEvent(input$goPartitionSpat, {
# loop over all species if batch is on
if(input$batch == TRUE) spLoop <- allSp() else spLoop <- curSp()
# PROCESSING ####
for(sp in spLoop) {
if (is.null(bgMask())) {
logger %>% writeLog(
type = 'error', hlSpp(sp),
"Before partitioning occurrences, mask your ",
"environmental variables by your background extent.")
return()
}
# FUNCTION CALL ####
group.data <- part_partitionOccs(spp[[sp]]$occs, spp[[sp]]$bg,
input$partitionSpatSel, kfolds = NULL,
bgMask = spp[[sp]]$procEnvs$bgMask,
aggFact = input$aggFact, logger,
spN = sp)
req(group.data)
# LOAD INTO SPP ####
spp[[sp]]$occs$partition <- group.data$occs.grp
spp[[sp]]$bg$partition <- group.data$bg.grp
spp[[sp]]$rmm$code$wallace$partition_code <- input$partitionSpatSel
spp[[sp]]$rmm$code$wallace$partition_agg <- input$aggFact
# REFERENCES
knitcitations::citep(citation("ENMeval", auto = TRUE))
# METADATA ####
spp[[sp]]$rmm$model$partition$Spatial <- 'Spatial'
if(input$partitionSpatSel == 'block') {
spp[[sp]]$rmm$model$partition$numberFolds <- 4
spp[[sp]]$rmm$model$partition$partitionRule <- 'spatial block'
}
if(input$partitionSpatSel == 'cb1') {
spp[[sp]]$rmm$model$partition$numberFolds <- 2
spp[[sp]]$rmm$model$partition$partitionRule <- 'checkerboard'
}
if(input$partitionSpatSel == 'cb2') {
spp[[sp]]$rmm$model$partition$numberFolds <- 4
spp[[sp]]$rmm$model$partition$partitionRule <- 'hierarchical checkerboard'
spp[[sp]]$rmm$model$partition$notes <- paste('aggregation factor =',
input$aggFact)
}
}
common$update_component(tab = "Map")
})
return(list(
save = function() {
list(
partitionSpatSel = input$partitionSpatSel,
aggFact = input$aggFact
)
},
load = function(state) {
updateSelectInput(session, "partitionSpatSel", selected = state$partitionSpatSel)
updateNumericInput(session, "aggFact", value = state$aggFact)
}
))
}
part_spat_module_map <- function(map, common) {
occs <- common$occs
# Map logic
if (!is.null(occs()$partition)) {
occsGrp <- occs()$partition
# colors for partition symbology
if (max(occsGrp) < 3) {
newColors <- RColorBrewer::brewer.pal(n = 3, "Set2")[1:max(occsGrp)]
} else if (max(occsGrp) < 9) {
newColors <- RColorBrewer::brewer.pal(n = max(occsGrp), "Set2")
} else if (max(occsGrp) < 12) {
newColors <- RColorBrewer::brewer.pal(n = max(occsGrp), "RdYlBu")
} else {
newColors <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n = 11, "RdYlBu"))(max(occsGrp))
}
partsFill <- newColors[occsGrp]
map %>% clearAll() %>%
addCircleMarkers(data = occs(), lat = ~latitude, lng = ~longitude,
radius = 5, color = 'red', fill = TRUE,
fillColor = partsFill, fillOpacity = 1, weight = 2,
popup = ~pop) %>%
addLegend("bottomright", colors = newColors,
title = "Partition Groups", labels = sort(unique(occsGrp)),
opacity = 1)
} else {
map %>% clearAll() %>%
addCircleMarkers(data = occs(), lat = ~latitude, lng = ~longitude,
radius = 5, color = 'red', fill = TRUE, fillColor = "red",
fillOpacity = 0.2, weight = 2, popup = ~pop) %>%
zoom2Occs(occs())
}
}
part_spat_module_rmd <- function(species) {
# Variables used in the module's Rmd code
list(
part_spat_knit = !is.null(species$rmm$model$partition$Spatial)&is.null(species$rmm$code$wallace$partition_agg),
method_rmd = species$rmm$model$partition$partitionRule,
method_code_rmd = species$rmm$code$wallace$partition_code,
part_spat_aggreg_knit = !is.null(species$rmm$code$wallace$partition_agg),
aggFact_rmd = species$rmm$code$wallace$partition_agg
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.