Nothing
#' Function optim will minimize
#'
#' @param x One point in \eqn{\rm I\!R^{(p+q)}}.
#' @param dim.ar Length of AR vector.
#' @param dim.ma Length of MA vector.
#' @param y Vector of a time series.
#'
#' @return
#' \describe{
#' \item{\code{ms}}{Mean square at the point \code{x}.}
#' }
#'
#'
#' @description Computes the mean square of the time series at the point \code{x}, will be minimize with the \code{\link[stats]{optim}} function in our function \code{\link{estimation}}.
#'
#' @export
#'
meansq <- function(x, dim.ar = NULL, dim.ma = NULL, y)
{
n <- length(y)
e <- y
if (is.null(dim.ar) || dim.ar==0) {
ma <-x
ar <- 0
dim.ar <- 0
for (t in 2:n){
e[t] <- y[t]+ sum(ma[1:min((t-1),dim.ma)]*e[(t-1):max(1,(t - dim.ma))])
}
} else {
if (is.null(dim.ma) || dim.ma==0) {
ar <- x
ma <- 0
dim.ma <- 0
for (t in 2:n){
e[t] <- y[t]- sum(ar[1:min((t-1),dim.ar)]*y[(t-1):max(1,(t - dim.ar))])
}
} else {
ar <- x[1:dim.ar]
ma <- x[(dim.ar + 1):length(x)]
for (t in 2:n){
e[t] <- y[t]- sum(ar[1:min((t-1),dim.ar)]*y[(t-1):max(1,(t - dim.ar))]) + sum(ma[1:min((t-1),dim.ma)]*e[(t-1):max(1,(t - dim.ma))])
}
}
}
ms <- mean(e^2)
return(ms)
}
#' Parameters estimation of a time series.
#'
#' @description Estimates the parameters of a time series for given orders \code{p} and \code{q}
#'
#' @param p Order of AR, if \code{NULL}, MA is computed.
#' @param q Order of MA, if \code{NULL}, AR is computed.
#' @param y Univariate time series.
#' @param meanparam Logical argument if the mean parameter has to be computed or not. If FALSE \eqn{\mu} is not computed.
#'
#' @importFrom stats optim
#'
#' @return List of estimate coefficients:
#' \describe{
#' \item{\code{mu}}{Mean parameter}.
#' \item{\code{ar}}{Vector of AR coefficients with length is equal to \code{p}.}
#' \item{\code{ma}}{Vector of MA coefficients with length is equal to \code{q}.}
#' \item{\code{sigma.carre}}{Mean square residuals.}
#' }
#' @export
#'
#' @details This function uses the algorithm BFGS in the function optim to minimize our objective function \code{\link{meansq}}.
#'
#' @references Francq, C. and Zakoïan, J. 1998, Estimating linear representations of nonlinear processes
#' \emph{Journal of Statistical Planning and Inference}, vol. 68, no. 1, pp. 145-165.
#'
#' @examples
#' y<-sim.ARMA(1000,ar = c(0.9,-0.3), ma = 0.2, method = "product")
#' estimation(p = 2, q = 1, y = y)
#'
#' estimation(p = 1, q = 1, y = CAC40return.sq, meanparam = TRUE)
#'
estimation <- function(p = NULL, q = NULL, y, meanparam = FALSE)
{
mu<-0
if (meanparam == TRUE){
mu<-mean(y)
y<-y-mu
}
if (is.null(p)) {p1<-0;q1<-q}
else {
if (is.null(q)) {q1<-0;p1<-p}
else {p1<-p;q1<-q}
} #si p et q ne peuvent pas etre egaux à 0 en meme temps
para<-numeric(p1+q1)
res <- optim(par = para, fn = meansq, dim.ar = p1, dim.ma = q1, y = y, method = "BFGS",control = list(trace=0))
if(is.null(p) || p==0) {
return(list(mu=mu,ma=res$par,sigma.carre=res$value))
}
else {
if (is.null(q) || q==0){
return(list(mu=mu,ar=res$par,sigma.carre=res$value))
}
else {
return(list(mu=mu,ar=res$par[1:p],ma=res$par[(p+1):length(res$par)],sigma.carre=res$value))
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.