clean_fit_glm | R Documentation |
Please see https://win-vector.com/2014/05/30/trimming-the-fat-from-glm-models-in-r/ for discussion.
clean_fit_glm(
outcome,
variables,
data,
...,
family,
intercept = TRUE,
outcome_target = NULL,
outcome_comparator = "==",
weights = NULL,
env = baseenv()
)
outcome |
character, name of outcome column. |
variables |
character, names of varaible columns. |
data |
data.frame, training data. |
... |
not used, force later arguments to be used by name |
family |
passed to stats::glm() |
intercept |
logical, if TRUE allow an intercept term. |
outcome_target |
scalar, if not NULL write outcome==outcome_target in formula. |
outcome_comparator |
one of "==", "!=", ">=", "<=", ">", "<", only use of outcome_target is not NULL. |
weights |
passed to stats::glm() |
env |
environment to work in. |
list(model=model, summary=summary)
mk_data_example <- function(k) {
data.frame(
x1 = rep(c("a", "a", "b", "b"), k),
x2 = rep(c(0, 0, 0, 1), k),
y = rep(1:4, k),
yC = rep(c(FALSE, TRUE, TRUE, TRUE), k),
stringsAsFactors = FALSE)
}
res_glm <- clean_fit_glm("yC", c("x1", "x2"),
mk_data_example(1),
family = binomial)
length(serialize(res_glm$model, NULL))
res_glm <- clean_fit_glm("yC", c("x1", "x2"),
mk_data_example(10000),
family = binomial)
length(serialize(res_glm$model, NULL))
predict(res_glm$model,
newdata = mk_data_example(1),
type = "response")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.