Nothing
library(testthat)
library(xegaSelectGene)
FitnessRange<-1000
test_that("NewlFselectGenes OK",
{lF<-NewlFselectGenes()
expect_identical(lF$SelectionContinuation(), TRUE)
expect_equal(lF$Max(), 1)
expect_equal(lF$Offset(), 1)
expect_equal(lF$Eps(), 0.01)
expect_equal(lF$TournamentSize(), 2)
expect_equal(lF$SelectionBias(), 1.5)
}
)
test_that("SelectPropFitOnln OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFitOnln(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectPropFitOnln(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFitOnln((fit^2), lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectPropFit OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFit(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectPropFit(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFit(fit^2, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectPropFitM OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFitM(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectPropFitM(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFitM(fit^2, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectPropFitDiffOnln OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFitDiffOnln(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectPropFitDiffOnln(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFitDiffOnln((mean(fit)+fit)^2, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectPropFitDiff OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFitDiff(fit, lF)
fit<-sample(FitnessRange, 100, replace=TRUE)
expect_identical(fit[f1]%in%fit, TRUE)
f2<-SelectPropFitDiff(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFitDiff((fit+mean(fit))^2, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectPropFitDiffM OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectPropFitDiffM(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectPropFitDiffM(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectPropFitDiffM((fit+mean(fit))^2, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectUniform OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectUniform(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectUniform(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectUniform(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit)-sqrt(var(fit)))
expect_lt(mean(fit[f100]), mean(fit)+sqrt(var(fit)))
}
)
test_that("SelectUniformP OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectUniformP(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectUniformP(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectUniformP(fit, lF, 100)
expect_identical(mean(fit[f100]), mean(fit))
}
)
test_that("SelectDuel OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectDuel(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectDuel(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectDuel(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectTournament 2 OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectTournament(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectTournament(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectTournament(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectTournament 5 OK",
{lF<-NewlFselectGenes()
lF$TournamentSize<-parm(5)
expect_equal(lF$TournamentSize(), 5)
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectTournament(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectTournament(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectTournament(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectSUS (negative fitness) OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectSUS(fit, lF)
expect_identical(fit[f1]%in%fit, TRUE)
})
test_that("SelectSUS OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
f2<-SelectSUS(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectSUS(fit^2, lF, 10)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectLRSelective OK",
{lF<-NewlFselectGenes()
lF$SelectionBias<-parm(2)
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectLRSelective(fit, lF)
fit<-sample(FitnessRange, 100, replace=TRUE)
expect_identical(fit[f1]%in%fit, TRUE)
f2<-SelectLRSelective(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectLRSelective(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectLinearRankTSR OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
fit<-fit - mean(fit)
f1<-SelectLinearRankTSR(fit, lF)
fit<-sample(FitnessRange, 100, replace=TRUE)
expect_identical(fit[f1]%in%fit, TRUE)
f2<-SelectLinearRankTSR(fit, lF, 2)
expect_identical(fit[f2]%in%fit, rep(TRUE,2))
f100<-SelectLinearRankTSR(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("TransformSelect SelectSUS OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-TransformSelect(fit, lF, SelectSUS)
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory() OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory()
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory Uniform OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory(method="Uniform")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit)-sqrt(var(fit)))
expect_lt(mean(fit[f100]), mean(fit)+sqrt(var(fit)))
}
)
test_that("SelectGeneFactory UniformP OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory(method="UniformP")
f100<-cSelect(fit, lF, 100)
expect_equal(mean(fit[f100]), mean(fit))
f110<-cSelect(fit, lF, 110)
expect_identical((mean(fit[f110])==mean(fit)), FALSE)
}
)
test_that("SelectGeneFactory ProportionalOnln OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory(method="ProportionalOnln")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory Proportional OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory(method="Proportional")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory ProportionalM OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("ProportionalM")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory PropFitDiffOnln OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("PropFitDiffOnln")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory PropFitDiff OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("PropFitDiff")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory PropFitDiffM OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("PropFitDiffM")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory Duel OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("Duel")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory Tournament OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("Tournament")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory STournament OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("STournament")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory LRSelective OK",
{lF<-NewlFselectGenes()
lF$SelectionBias<-function() {1.99}
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("LRSelective")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory LRTSR OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("LRTSR")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory SUS OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
cSelect<-SelectGeneFactory("SUS")
f100<-cSelect(fit, lF, 100)
expect_gt(mean(fit[f100]), mean(fit))
}
)
test_that("SelectGeneFactory HUGO OK",
{lF<-NewlFselectGenes()
fit<-sample(FitnessRange, 100, replace=TRUE)
expect_error(SelectGeneFactory("HUGO"))
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.