| xpose.VPC.both | R Documentation |
Xpose Visual Predictive Check (VPC) for both continuous and Below or Above Limit of Quantification (BLQ or ALQ) data.
xpose.VPC.both(
vpc.info = "vpc_results.csv",
vpctab = dir(pattern = "^vpctab")[1],
object = NULL,
subset = NULL,
main = "Default",
main.sub = NULL,
inclZeroWRES = FALSE,
cont.logy = F,
hline = "default",
add.args.cont = list(),
add.args.cat = list(),
...
)
vpc.info |
Name of PSN file to use. File will come from |
vpctab |
Name of vpctab file produced from PsN. |
object |
Xpose data object. |
subset |
Subset of data to look at. |
main |
Title for plot. |
main.sub |
Used for names above each plot when using multiple plots.
Should be a vector, e.g. |
inclZeroWRES |
Include WRES=0 rows in the computations for these plots? |
cont.logy |
Should the continuous plot y-axis be on the log scale? |
hline |
Horizontal line marking the limits of quantification. If they are defined, they must be a vector of values. |
add.args.cont |
Additional arguments to the continuous plot.
|
add.args.cat |
Additional arguments to the categorical plot.
|
... |
Additional arguments to both plots. |
Andrew C. Hooker
xpose.VPC, xpose.VPC.categorical.
Other PsN functions:
boot.hist(),
bootscm.import(),
npc.coverage(),
randtest.hist(),
read.npc.vpc.results(),
read.vpctab(),
xpose.VPC(),
xpose.VPC.categorical(),
xpose4-package
Other specific functions:
absval.cwres.vs.cov.bw(),
absval.cwres.vs.pred(),
absval.cwres.vs.pred.by.cov(),
absval.iwres.cwres.vs.ipred.pred(),
absval.iwres.vs.cov.bw(),
absval.iwres.vs.idv(),
absval.iwres.vs.ipred(),
absval.iwres.vs.ipred.by.cov(),
absval.iwres.vs.pred(),
absval.wres.vs.cov.bw(),
absval.wres.vs.idv(),
absval.wres.vs.pred(),
absval.wres.vs.pred.by.cov(),
absval_delta_vs_cov_model_comp,
addit.gof(),
autocorr.cwres(),
autocorr.iwres(),
autocorr.wres(),
basic.gof(),
basic.model.comp(),
cat.dv.vs.idv.sb(),
cat.pc(),
cov.splom(),
cwres.dist.hist(),
cwres.dist.qq(),
cwres.vs.cov(),
cwres.vs.idv(),
cwres.vs.idv.bw(),
cwres.vs.pred(),
cwres.vs.pred.bw(),
cwres.wres.vs.idv(),
cwres.wres.vs.pred(),
dOFV.vs.cov(),
dOFV.vs.id(),
dOFV1.vs.dOFV2(),
data.checkout(),
dv.preds.vs.idv(),
dv.vs.idv(),
dv.vs.ipred(),
dv.vs.ipred.by.cov(),
dv.vs.ipred.by.idv(),
dv.vs.pred(),
dv.vs.pred.by.cov(),
dv.vs.pred.by.idv(),
dv.vs.pred.ipred(),
gof(),
ind.plots(),
ind.plots.cwres.hist(),
ind.plots.cwres.qq(),
ipred.vs.idv(),
iwres.dist.hist(),
iwres.dist.qq(),
iwres.vs.idv(),
kaplan.plot(),
par_cov_hist,
par_cov_qq,
parm.vs.cov(),
parm.vs.parm(),
pred.vs.idv(),
ranpar.vs.cov(),
runsum(),
wres.dist.hist(),
wres.dist.qq(),
wres.vs.idv(),
wres.vs.idv.bw(),
wres.vs.pred(),
wres.vs.pred.bw(),
xpose.VPC(),
xpose.VPC.categorical(),
xpose4-package
## Not run:
library(xpose4)
## move to the directory where results from PsN
## are found
cur.dir <- getwd()
setwd(paste(cur.dir,"/vpc_cont_LLOQ/",sep=""))
xpose.VPC()
xpose.VPC.categorical(censored=T)
xpose.VPC.both()
xpose.VPC.both(subset="DV>1.75")
xpose.VPC.both(add.args.cont=list(ylim=c(0,80)))
xpose.VPC.both(add.args.cont = list(ylim = c(0.01, 80)), xlim = c(0,
40), add.args.cat = list(ylim = c(0, 0.4)), cont.logy = T)
xpose.VPC.both(cont.logy=T)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.