Nothing
test_that("npv", {
lst <- data_altman()
pathology <- lst$pathology
path_tbl <- lst$path_tbl
expect_equal(
npv(pathology, truth = "pathology", estimate = "scan")[[".estimate"]],
2 / 3,
tolerance = .001
)
expect_equal(
npv(path_tbl)[[".estimate"]],
2 / 3,
tolerance = .001
)
expect_equal(
npv(pathology, truth = pathology, estimate = "scan_na")[[".estimate"]],
0.67088,
tolerance = .001
)
expect_equal(
npv(pathology, truth = pathology, estimate = "scan", prevalence = .5)[[".estimate"]],
0.85714,
tolerance = .001
)
})
test_that("`event_level = 'second'` works", {
lst <- data_altman()
df <- lst$pathology
df_rev <- df
df_rev$pathology <- stats::relevel(df_rev$pathology, "norm")
df_rev$scan <- stats::relevel(df_rev$scan, "norm")
expect_equal(
npv_vec(df$pathology, df$scan),
npv_vec(df_rev$pathology, df_rev$scan, event_level = "second")
)
})
# ------------------------------------------------------------------------------
test_that("Three class", {
multi_ex <- data_three_by_three()
micro <- data_three_by_three_micro()
micro$prev <- (micro$tp + micro$fn) / (micro$p + micro$n)
expect_equal(
npv(multi_ex, estimator = "macro")[[".estimate"]],
macro_metric(npv_binary)
)
expect_equal(
npv(multi_ex, estimator = "macro_weighted")[[".estimate"]],
macro_weighted_metric(npv_binary)
)
expect_equal(
npv(multi_ex, estimator = "micro")[[".estimate"]],
with(
micro,
(sum(tn) / sum(n) * sum((1 - prev))) /
((1 - sum(tp) / sum(p)) * sum(prev) + (sum(tn) / sum(n) * sum((1 - prev))))
)
)
# Prevalence defined by the user. Defined once for all levels?
expect_equal(
npv(multi_ex, estimator = "micro", prevalence = .4)[[".estimate"]],
with(
micro,
(sum(tn) / sum(n) * sum((1 - .4))) /
((1 - sum(tp) / sum(p)) * sum(.4) + (sum(tn) / sum(n) * sum((1 - .4))))
)
)
})
test_that("works with hardhat case weights", {
lst <- data_altman()
df <- lst$pathology
imp_wgt <- hardhat::importance_weights(seq_len(nrow(df)))
freq_wgt <- hardhat::frequency_weights(seq_len(nrow(df)))
expect_no_error(
npv_vec(df$pathology, df$scan, case_weights = imp_wgt)
)
expect_no_error(
npv_vec(df$pathology, df$scan, case_weights = freq_wgt)
)
})
test_that("work with class_pred input", {
skip_if_not_installed("probably")
cp_truth <- probably::as_class_pred(two_class_example$truth, which = 1)
cp_estimate <- probably::as_class_pred(two_class_example$predicted, which = 2)
fct_truth <- two_class_example$truth
fct_truth[1] <- NA
fct_estimate <- two_class_example$predicted
fct_estimate[2] <- NA
expect_identical(
npv_vec(fct_truth, cp_estimate),
npv_vec(fct_truth, fct_estimate)
)
expect_identical(
npv_vec(fct_truth, cp_estimate, na_rm = FALSE),
NA_real_
)
expect_snapshot(
error = TRUE,
accuracy_vec(cp_truth, cp_estimate)
)
})
# ------------------------------------------------------------------------------
test_that("Two class weighted - sklearn equivalent", {
py_res <- read_pydata("py-npv")
r_metric <- npv
two_class_example$weights <- read_weights_two_class_example()
expect_equal(
r_metric(two_class_example, truth, predicted, case_weights = weights)[[".estimate"]],
py_res$case_weight$binary
)
})
test_that("Multi class weighted - sklearn equivalent", {
py_res <- read_pydata("py-npv")
r_metric <- npv
hpc_cv$weights <- read_weights_hpc_cv()
expect_equal(
r_metric(hpc_cv, obs, pred, estimator = "macro", case_weights = weights)[[".estimate"]],
py_res$case_weight$macro
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.