Description Usage Arguments Value Examples
This plot method can be applied to PseudoDualSimulationsSummary
objects in order
to summarize them graphically. Possible type
of plots at the moment are those listed in
plot,PseudoSimulationsSummary,missing-method
plus:
Plot showing the fitted dose-efficacy curve. If no samples are involved, only the
average fitted dose-efficacy curve across the trials will be plotted. If samples (DLE and efficacy) are involved,
the average fitted dose-efficacy curve across the trials, together with the 95% credibility interval; and comparison
with the assumed truth (as specified by the trueEff
argument to
summary,PseudoDualSimulations-method
)
You can specify any subset of these in the type
argument.
1 2 3 4 5 6 7 8 |
x |
the |
y |
missing |
type |
the types of plots you want to obtain. |
... |
not used |
A single ggplot
object if a single plot is
asked for, otherwise a gridExtra{gTree}
object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 | # nolint start
##obtain the plot of the summary for the simulation results
##If DLE and efficacy responses are considered in the simulations
##Specified your simulations when no samples are used
## we need a data object with doses >= 1:
data <- DataDual(doseGrid=seq(25,300,25),placebo=FALSE)
##First for the DLE model
##The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class
DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8),
DLEweights=c(3,3),
DLEdose=c(25,300),
data=data)
##The efficacy model of 'ModelEff' (e.g 'Effloglog') class
Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),
nu=c(a=1,b=0.025),data=data,c=0)
##The escalation rule using the 'NextBestMaxGain' class
mynextbest<-NextBestMaxGain(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3)
##The increments (see Increments class examples)
## 200% allowable increase for dose below 300 and 200% increase for dose above 300
myIncrements<-IncrementsRelative(intervals=c(25,300),
increments=c(2,2))
##cohort size of 3
mySize<-CohortSizeConst(size=3)
##Stop only when 10 subjects are treated (for illustration)
myStopping <- StoppingMinPatients(nPatients=10)
##Now specified the design with all the above information and starting with a dose of 25
##Specified the design(for details please refer to the 'DualResponsesDesign' example)
design <- DualResponsesDesign(nextBest=mynextbest,
model=DLEmodel,
Effmodel=Effmodel,
stopping=myStopping,
increments=myIncrements,
cohortSize=mySize,
data=data,startingDose=25)
##Specify the true DLE and efficacy curves
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)
myTruthEff<- function(dose)
{Effmodel@ExpEff(dose,theta1=-4.818429,theta2=3.653058)
}
## Then specified the simulations and generate the trial
##For illustration purpose only 1 simulation is produced (nsim=1).
mySim <-simulate(object=design,
args=NULL,
trueDLE=myTruthDLE,
trueEff=myTruthEff,
trueNu=1/0.025,
nsim=1,
## this would need to be increased in the real
## application:
mcmcOptions=McmcOptions(burnin=10, step=1, samples=50),
seed=819,
parallel=FALSE)
##Then produce a summary of your simulations
MYSUM <- summary(mySim,
trueDLE=myTruthDLE,
trueEff=myTruthEff)
##Then plot the summary of the simulations
print(plot(MYSUM))
##If DLE and efficacy samples are involved
##Please refer to design-method 'simulate DualResponsesSamplesDesign' examples for details
##specified the next best
mynextbest<-NextBestMaxGainSamples(DLEDuringTrialtarget=0.35,
DLEEndOfTrialtarget=0.3,
TDderive=function(TDsamples){
quantile(TDsamples,prob=0.3)},
Gstarderive=function(Gstarsamples){
quantile(Gstarsamples,prob=0.5)})
##specified the design
design <- DualResponsesSamplesDesign(nextBest=mynextbest,
cohortSize=mySize,
startingDose=25,
model=DLEmodel,
Effmodel=Effmodel,
data=data,
stopping=myStopping,
increments=myIncrements)
##options for MCMC
##for illustration purpose we use 10 burn-in and generate 50 samples
options<-McmcOptions(burnin=10,step=2,samples=50)
##The simulations
##For illustration purpose only 1 simulation is produced (nsim=1).
# mySim<-simulate(design,
# args=NULL,
# trueDLE=myTruthDLE,
# trueEff=myTruthEff,
# trueNu=1/0.025,
# nsim=1,
# mcmcOptions=options,
# seed=819,
# parallel=FALSE)
#
# ##Then produce a summary of your simulations
# MYSUM <- summary(mySim,
# trueDLE=myTruthDLE,
# trueEff=myTruthEff)
#
# ##Then plot the summary of the simulations
# print(plot(MYSUM))
##OR if the 'EffFlexi' class is used
## for the efficacy model
Effmodel<- EffFlexi(Eff=c(1.223, 2.513),Effdose=c(25,300),
sigma2=c(a=0.1,b=0.1),sigma2betaW=c(a=20,b=50),smooth="RW2",data=data)
##Specified the design
design <- DualResponsesSamplesDesign(nextBest=mynextbest,
cohortSize=mySize,
startingDose=25,
model=DLEmodel,
Effmodel=Effmodel,
data=data,
stopping=myStopping,
increments=myIncrements)
##specified the true DLE curve and the true expected efficacy values at all dose levels
myTruthDLE <- probFunction(DLEmodel, phi1 = -53.66584, phi2 = 10.50499)
myTruthEff<- c(-0.5478867, 0.1645417, 0.5248031, 0.7604467,
0.9333009 ,1.0687031, 1.1793942 , 1.2726408 ,
1.3529598 , 1.4233411 , 1.4858613 , 1.5420182)
##The true gain curve can also be seen
myTruthGain <- function(dose)
{return((myTruthEff(dose))/(1+(myTruthDLE(dose)/(1-myTruthDLE(dose)))))}
##The simulations
# ##For illustration purpose only 1 simulation is produced (nsim=1).
# mySim<-simulate(object=design,
# args=NULL,
# trueDLE=myTruthDLE,
# trueEff=myTruthEff,
# trueSigma2=0.025,
# trueSigma2betaW=1,
# nsim=1,
# mcmcOptions=options,
# seed=819,
# parallel=FALSE)
# ##Then produce a summary of your simulations
# MYSUM <- summary(mySim,
# trueDLE=myTruthDLE,
# trueEff=myTruthEff)
#
# ##Then plot the summary of the simulations
# print(plot(MYSUM))
# nolint end
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.