# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received A copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: BASIC STATISTICS:
# basicStats Returns a basic statistics summary
################################################################################
bStatCor =
function(x, ci = 0.95)
{ # A function implemented by Diethelm Wuertz
# Description:
# Calculates Basic Statistics
# Arguments:
# x - an object which can be transformed by the function
# as.matrix() into an object of class matrix.
# ci - a numeric value setting the confidence interval.
# Value:
# a two-column data frame, where the first column takes the
# value of the statistics, and the second its name, e.g.
# "nobs", "NAs", "Minimum", "Maximum", "1. Quartile",
# "3. Quartile", "Mean", "Median", "Sum", "SE Mean",
# "LCL Mean", "UCL Mean", "Variance", "Stdev", "Skewness",
# "Kurtosis")
# FUNCTION:
# Univariate/Multivariate:
y = as.matrix(x)
# Handle Column Names:
if (is.null(colnames(y))) {
Dim = dim(y)[2]
if (Dim == 1) {
colnames(y) = paste(substitute(x), collapse = ".")
} else if (Dim > 1) {
colnames(y) =
paste(paste(substitute(x), collapse = ""), 1:Dim, sep = "")
}
}
# Internal Function - CL Levels:
cl.vals = function(x, ci) {
x = x[!is.na(x)]
n = length(x)
if(n <= 1) return(c(NA, NA))
se.mean = sqrt(stats::var(x)/n)
t.val = qt((1 - ci)/2, n - 1)
mn = mean(x)
lcl = mn + se.mean * t.val
ucl = mn - se.mean * t.val
c(lcl, ucl)
}
# Basic Statistics:
nColumns = dim(y)[2]
ans = NULL
for (i in 1:nColumns) {
X = as.numeric(y[, i])
# Observations:
X.length = length(X)
X = X[!is.na(X)]
X.na = X.length - length(X)
# Basic Statistics:
z = c(
X.length, X.na, min(X), max(X),
as.numeric(quantile(X, prob = 0.25, na.rm = TRUE)),
as.numeric(quantile(X, prob = 0.75, na.rm = TRUE)),
mean(X), median(X), sum(X), sqrt(stats::var(X)/length(X)),
cl.vals(X, ci)[1], cl.vals(X, ci)[2], stats::var(X),
sqrt(stats::var(X)), sqrt(stats::var(X))/mean(X))
# Row Names:
znames = c(
"nobs", "NAs", "Minimum", "Maximum",
"1. Quartile", "3. Quartile", "Mean", "Median",
"Sum", "SE Mean", "LCL Mean", "UCL Mean",
"Variance", "Stdev","RSD")
# Output as data.frame
result = matrix(z, ncol = 1)
row.names(result) = znames
ans = cbind(ans, result)
}
# Column Names:
colnames(ans) = colnames(y)
# Return Value:
data.frame(round(ans, digits = 6))
}
################################################################################
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.