#' @title Methods for \code{unitModalReg} Objects
#'
#' @description Methods for extracting information from fitted models objects of class \code{\link{unitModalReg}}.
#'
#' @author André F. B. Menezes \email{andrefelipemaringa@gmail.com}
#'
#' @param object,x fitted model object of class \code{\link{unitModalReg}}.
#' @param digits minimal number of _significant_ digits
#' @param correlation logical; if \code{TRUE}, the correlation matrix of
#' the estimated parameters is returned and printed. Default is \code{FALSE}.
#' @param parm a specification of which parameters are to be given confidence intervals,
#' either a vector of numbers or a vector of names. If missing, all parameters are considered.
#' @param level the confidence level required.
#' @param ... additional argument(s) for methods. Currently not used.
#'
#' @importFrom stats qnorm pnorm cov2cor coef vcov printCoefmat formula update
#' @importFrom Formula Formula
#'
#' @name methods-unitModalReg
NULL
#' @rdname methods-unitModalReg
#' @export
print.unitModalReg <- function(x, digits = 4, ...)
{
p <- ncol(x$data$X)
cat("\n", paste0(x$family, " regression model"), sep = "")
cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
cat("Mu coefficients (mode model with ", x$link$name, " link): \n", sep = "")
print.default(FF(x$coefficients[1:p], Digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
if (x$family != "unitMaxwell") {
cat("Model with constant shape parameter:", "\n", sep = "")
print.default(format(x$coefficients[-(1:p)], digits = digits), print.gap = 2, quote = FALSE)
cat("\n")
}
invisible(x)
}
# Summary -----------------------------------------------------------------
#' @rdname methods-unitModalReg
#' @export
summary.unitModalReg <- function(object, correlation = FALSE, ...) {
estimates <- object$coefficients
stderror <- sqrt(diag(object$vcov))
zvalue <- estimates/stderror
pvalue <- 2 * pnorm(-abs(zvalue))
table <- cbind("Estimate" = estimates,
"Std. Error" = stderror,
"Z value" = zvalue,
"Pr(>|z|)" = pvalue)
if (correlation) {
correlation <- cov2cor(object$vcov)
}
out <- list(coeftable = table,
loglik = object$loglik,
correlation = correlation,
call = object$call,
link = object$link$name,
family = object$family,
data = object$data)
class(out) <- "summary.unitModalReg"
out
}
# Print output summary ----------------------------------------------------
#' @export
print.summary.unitModalReg <- function(x, digits = max(3, getOption("digits") - 3), ...) {
p <- ncol(x$data$X)
cat("\n Wald-tests for ", x$family, " regression model", "\n" ,sep = "")
cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
cat("Mu coefficients (mode model with ", x$link, " link): \n", sep = "")
printCoefmat(x$coeftable[1:p, , drop = FALSE], digits = digits, has.Pvalue = TRUE)
cat("\n")
if (x$family != "unitMaxwell") {
cat("Model with constant shape:", "\n", sep = "")
printCoefmat(x$coeftable[-(1:p), , drop = FALSE], digits = digits, has.Pvalue = TRUE)
cat("\n")
}
if (is.matrix(x$correlation)) {
cat("Correlation of coefficients:", "\n", sep = "")
corr <- x$correlation
corr <- format(round(corr, 2L), nsmall = 2L, digits = digits)
corr[!lower.tri(corr)] <- ""
print(corr[-1, -ncol(corr), drop = FALSE], quote = FALSE)
cat("\n")
}
invisible(x)
}
# coef function -----------------------------------------------------------
#' @rdname methods-unitModalReg
#' @export
coef.unitModalReg <- function(object, ...) {
if (!missing(...)) {
warning("Extra arguments discarded")
}
object$coefficients
}
# vcov function -----------------------------------------------------------
#' @rdname methods-unitModalReg
#' @export
vcov.unitModalReg <- function(object, ...) {
if (!missing(...)) {
warning("Extra arguments discarded")
}
object$vcov
}
# logLik function ---------------------------------------------------------
#' @rdname methods-unitModalReg
#' @export
logLik.unitModalReg <- function(object, ...) {
if (!missing(...)) {
warning("extra arguments discarded")
}
ll <- object$loglik
attr(ll, "df") <- object$npar
attr(ll, "nobs") <- object$nobs
class(ll) <- "logLik"
ll
}
# confint function --------------------------------------------------------
#' @rdname methods-unitModalReg
#' @export
confint.unitModalReg <- function(object, parm, level = 0.95, ...)
{
cf <- coef(object)
ses <- sqrt(diag(vcov(object)))
pnames <- names(ses)
if (missing(parm)) {
parm <- pnames
}
else if (is.numeric(parm)) {
parm <- pnames[parm]
}
a <- (1 - level)/2
a <- c(a, 1 - a)
fac <- qnorm(a)
pct <- format.perc(a, 3)
ci <- array(NA_real_, dim = c(length(parm), 2L),
dimnames = list(parm, pct))
ci[] <- cf[parm] + ses[parm] %o% fac
ci
}
#' @rdname methods-unitModalReg
#' @export
fitted.unitModalReg <- function(object, ...) {
if (!missing(...)) {
warning("Extra arguments discarded")
}
object$fitted.values
}
# Print output of GoF Test ----------------------------------------------
#' @export
print.gof <- function(x, ...) {
vo <- FF(t(x$voung), 3)
cr <- FF(x$info_crit, 3)
cat("\nGoodness-of-Fit for modal regression models \n", sep = "")
cat("\nCall: ", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "")
cat("Voung tests for all model combinations: \n")
print(vo, quote = F)
cat("\n\n")
cat("Information criterions of modal regression models: \n")
print(cr, quote = F)
}
#' @export
update.unitModalReg <- function(object, formula., ..., evaluate = TRUE)
{
call <- object$call
if (is.null(call)) stop("need an object with call component")
extras <- match.call(expand.dots = FALSE)$...
if (!missing(formula.)) call$formula <- formula(update(Formula(formula(object)), formula.))
if (length(extras)) {
existing <- !is.na(match(names(extras), names(call)))
for (a in names(extras)[existing]) call[[a]] <- extras[[a]]
if (any(!existing)) {
call <- c(as.list(call), extras[!existing])
call <- as.call(call)
}
}
if(evaluate) eval(call, parent.frame())
else call
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.