options(mc.cores = parallel::detectCores())
library(StateSpaceInference)
library(parallel)
library(rstan)
sessionInfo()
seed <- 2
set.seed(seed)
#cl <- makeCluster(parallel::detectCores())
#cl = "mclapply"
#cl <- NULL
TT <- 20
x <- rnorm(TT)
x <- cumsum(x)
z <- generate_stan_skew(TT, x, c(0.25, 2))
y <- matrix(0, nrow = TT, ncol = 100)
for (j in 1:TT) {
y[j, ] <- z[[j]]
}
datastan <- list(TT = TT, y = y)
fit <- stan(
file = "../../../script/stan/skewednormal.stan",
data = datastan,
iter = 1000,
chains = 2*parallel::detectCores(),
cores = parallel::detectCores(),
pars = c("sigma", "gamma")
)
print(fit)
theta_stan = extract(fit, pars = c("sigma", "gamma"))
save.image()
save(theta_stan, file = "theta_stan.RData")
stan_df <- data.frame(
sigma = theta_stan$sigma,
gamma = theta_stan$gamma,
weight = 1/length(theta_stan$sigma),
seed = seed,
type = "stan"
)
save(stan_df, file = "stan_df.RData")
saveRDS(stan_df, file = paste0("theta_stan_", seed,".RData"))
#library(shinystan)
#launch_shinystan(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.