# BASEADO EM: https://www.groundai.com/project/end-to-end-environmental-sound-classification-using-a-1d-convolutional-neural-network/1
library(mestrado)
library(torch)
library(torchaudio)
library(torchvision)
library(purrr)
bcbr2_train <- birdcallbr_dataset("data-raw", 1, download = TRUE, train = TRUE)
bcbr2_test <- birdcallbr_dataset("data-raw", 1, download = TRUE, train = FALSE)
pad_sequence <- function(batch) {
# Make all tensor in a batch the same length by padding with zeros
batch <- sapply(batch, function(x) (x$t()))
batch <- torch::nn_utils_rnn_pad_sequence(batch, batch_first = TRUE, padding_value = 0.)
return(batch$permute(c(1, 3, 2)))
}
collate_fn <- function(batch) {
# A list has the form:
# list of lists: (waveform, slice_id, filepath, sample_rate, label, label_one_hot)
# Transpose it
batch <- purrr::transpose(batch)
tensors <- batch$waveform
targets <- batch$label_index
# Group the list of tensors into a batched tensor
melspec <- transform_mel_spectrogram(n_fft = 1024, win_length = 1024, hop_length = 256, f_max = 8000, n_mels = 128, power = 1, device = device)
tensors <- pad_sequence(tensors)$to(device = device)
tensors <- melspec(tensors)
tensors <- torch::torch_hstack(c(tensors, tensors, tensors))
targets <- torch::torch_tensor(unlist(targets))$to(device = device)
return(list(tensors = tensors, targets = targets))
}
batch_size <- 64
device <- torch_device(if (cuda_is_available()) "cuda" else "cpu")
if(device$type == "cuda") {
num_workers <- 1
pin_memory <- TRUE
} else {
num_workers <- 0
pin_memory <- FALSE
}
bcbr2_train_dl <- dataloader(
dataset = bcbr2_train, batch_size = batch_size,
shuffle = TRUE, collate_fn = collate_fn,
num_workers = num_workers, pin_memory = pin_memory
)
bcbr2_test_dl <- dataloader(
dataset = bcbr2_test, batch_size = batch_size,
shuffle = FALSE, collate_fn = collate_fn,
num_workers = num_workers, pin_memory = pin_memory
)
it <- bcbr2_train_dl$.iter()
it$.next()
model <- model_resnet18(pretrained = TRUE)
model$parameters %>% purrr::walk(function(param) param$requires_grad_(FALSE))
num_features <- model$fc$in_features
model$fc <- nn_linear(in_features = num_features, out_features = length(bcbr2_train$labels))
model <- model$to(device = device)
# model(bcbr2_train_dl$.iter()$.next()$tensors)
str(model$parameters)
count_parameters <- function(model) {
requires <- purrr::map_lgl(model$parameters, ~.$requires_grad)
params <- purrr::map_int(model$parameters[requires], ~.$numel())
sum(params)
}
count_parameters(model)
optimizer <- torch::optim_sgd(model$parameters, lr = 0.005, weight_decay = 0.00001)
scheduler <- torch::lr_step(optimizer, step_size = 10, gamma = 0.1) # reduce the learning after 20 epochs by a factor of 10
criterion <- nn_cross_entropy_loss()
train <- function(model, epoch, log_interval) {
model$train()
batches <- enumerate(bcbr2_train_dl)
for(batch_idx in seq_along(batches)) {
batch <- batches[batch_idx][[1]]
data <- batch[[1]]$to(device = device)
target <- batch[[2]]$to(device = device)
# apply transform and model on whole batch directly on device
output <- model(data)
# negative log-likelihood for a tensor of size (batch x 1 x n_output)
loss <- criterion(output, target)$to(device = device)
optimizer$zero_grad()
loss$backward()
optimizer$step()
# update progress bar
pbar$tick(tokens = list(loss = loss$item()))
# record loss
losses <<- c(losses, loss$item())
if(batch_idx %% log_interval == 0) {
if(batch_idx != log_interval) dev.off()
plot(log10(losses), type = "l", col = "royalblue")
}
}
}
number_of_correct <- function(pred, target) {
# count number of correct predictions
return(pred$squeeze()$eq(target)$sum()$item())
}
get_likely_index <- function(tensor) {
# find most likely label index for each element in the batch
return(tensor$argmax(dim=-1L) + 1L)
}
test <- function(model, epoch) {
model$eval()
correct <- 0
batches <- enumerate(bcbr2_test_dl)
obs_vs_pred <- data.frame(obs = integer(0), pred = numeric(0))
for(batch_idx in seq_along(batches)) {
batch <- batches[batch_idx][[1]]
data <- batch[[1]]$to(device = device)
target <- batch[[2]]$to(device = device)
# apply transform and model on whole batch directly on device
output <- model(data)
pred <- get_likely_index(output)
correct <- correct + number_of_correct(pred, target)
obs_vs_pred <- rbind(obs_vs_pred, data.frame(obs = as.integer(target$to(device = torch_device("cpu"))), pred = as.numeric(pred$to(device = torch_device("cpu")))))
# update progress bar
pbar$tick()
}
print(glue::glue("Test Epoch: {epoch} Accuracy: {correct}/{length(bcbr2_test_dl$dataset)} ({scales::percent(correct / length(bcbr2_test_dl$dataset))})"))
print(obs_vs_pred %>% dplyr::mutate_all(as.factor) %>% yardstick::conf_mat(obs, pred))
}
log_interval <- 40
n_epoch <- 50
losses <- c()
for(epoch in seq.int(n_epoch)) {
cat(paste0("Epoch ", epoch, "/", n_epoch, "\n"))
pbar <- progress::progress_bar$new(total = (length(bcbr2_train_dl) + length(bcbr2_test_dl)), clear = FALSE, width = 90,
incomplete = ".", format = "[:bar] [:current/:total :percent] - ETA: :eta - loss: :loss")
train(model, epoch, log_interval)
test(model, epoch)
plot(losses, type = "l", col = "royalblue")
scheduler$step()
}
# guarda ------------------------------------------------------------------
# torch::torch_save(model, "inst/modelos/raw_1dconv_1seg.pt")
# recarrega ---------------------------------------------------------------
# model <- torch::torch_load("inst/modelos/raw_1dconv_1seg.pt")
# model$parameters %>% purrr::walk(function(param) param$requires_grad_(TRUE))
# predicao de uma imagem --------------------------------------------------
# TO DO
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.