#' @export
summary.life.data <-
function (object,
printem = T,
print.limit = 50,...)
{
lda.type <- data.object.type(data.ld = object)
if(lda.type != "frame.centered") cat("\nOld-style life data object; consider rebuilding it\n")
data.ld <- SMRD.sanity.life.data(x = object)
the.response <- Response(data.ld)
number.cases <- nrow(the.response)
the.case.weights <- case.weights(data.ld)
if(is.null(the.case.weights)) the.case.weights <- rep(1, number.cases)
the.censor.codes <- censor.codes(data.ld)
if(is.null(the.censor.codes)) {
the.censor.codes <- rep(1, number.cases)
no.censoring <- T
} else {
no.censoring <- F
}
not.dummy <- the.case.weights > 0 & the.censor.codes > 0
if(printem) {
out <- list()
summary_title <- paste0("Summary of ", get.data.title(data.ld))
row_names <- c(NULL)
vals <- c(NULL)
data.note <- get.data.note(data.ld)
if(!is.null(data.note)) {
the.characters <- string2char(data.note)
print.note <- length(the.characters) > 1 && !all(the.characters == "")
if(print.note) {
row_names <- c(row_names, parse.note(data.note))
vals <- c(vals,'')
}
}
row_names = c(row_names,"Rows in data matrix: ") ; vals = c(vals,nrow(the.response))
row_names = c(row_names,"Response units: "); vals = c(vals, get.time.units(data.ld))
row_names = c(row_names,"Minimum response: "); vals = c(vals, format(min(the.response)))
row_names = c(row_names,"Maximum response: "); vals = c(vals, format(max(the.response)))
row_names = c(row_names,"Cases in data set: ") ; vals = c(vals, sum(the.case.weights[not.dummy]))
number.exact.fail <- sum(the.case.weights[not.dummy & the.censor.codes == 1])
if(number.exact.fail > 0) {
row_names = c(row_names, "Exact observations: ")
vals = c(vals, number.exact.fail)
}
number.right.censored <- sum(the.case.weights[not.dummy & the.censor.codes == 2])
if(number.right.censored > 0) {
row_names = c(row_names, "Right censored observations: ")
vals = c(vals, number.right.censored)
}
number.left.censored <- sum(the.case.weights[not.dummy & the.censor.codes == 3])
if(number.left.censored > 0) {
row_names = c(row_names, "Left censored observations: ")
vals = c(vals, number.left.censored)
}
number.interval.censored <- sum(the.case.weights[not.dummy & the.censor.codes == 4])
if(number.interval.censored > 0) {
row_names = c(row_names, "Interval censored observations: ")
vals = c(vals, number.interval.censored)
}
number.sinterval.censored <- sum(the.case.weights[not.dummy & the.censor.codes == 5])
if(number.sinterval.censored > 0) {
row_names = c(row_names, "Small-interval observations: ") ; vals = c(vals, number.sinterval.censored)
}
if(no.censoring) {
row_names = c(row_names, "Censoring information: ")
vals = c(vals,'none')
}
the.failure.modes <- failure.modes(data.ld)
if(!is.null(the.failure.modes)) {
row_names = c(row_names, "Unique failure modes: ")
vals = c(vals, paste(unique(as.character(the.failure.modes)),collapse = ", "))
}
truncation.codes <- truncation.codes(data.ld)
ty <- truncation.response(data.ld)
if(!is.null(truncation.codes) && !is.null(ty)) {
if(is.null(truncation.codes) || is.null(ty)) {
stop("If either truncation.codes or ty is specified, both must be specified")
}
if(length(truncation.codes) != number.cases) {
stop(paste("Number of truncation codes ",length(truncation.codes), " is wrong"))
}
ty <- as.matrix(ty)
if (nrow(ty) != number.cases) {
stop(paste("Number of truncation times ",length(ty), " is wrong"))
}
nty <- ncol(ty)
row_names = c(row_names, "Right truncated observations: ")
vals = c(vals, sum(the.case.weights[not.dummy & truncation.codes == 2]))
row_names = c(row_names, "Left truncated observations: ")
vals = c(vals, sum(the.case.weights[not.dummy & truncation.codes == 3]))
row_names = c(row_names, "Interval truncated observations: ")
vals = c(vals, sum(the.case.weights[not.dummy & truncation.codes == 4]))
} else {
row_names = c(row_names, "Truncation information: ")
vals = c(vals,'none')
nty <- 0
truncation.codes <- rep(1, length(the.censor.codes))
ty <- rep(0, length(the.censor.codes))
}
the.xmat <- xmat(data.ld)
if(is.null(the.xmat)) {
row_names = c(row_names,"Explanatory variables: ")
vals = c(vals,'none')
}
out[[summary_title]] <- data.frame(row_names,
vals,
row.names = NULL,
stringsAsFactors = F)
colnames(out[[summary_title]]) <- NULL
if(!is.null(the.xmat)) {
if(nrow(the.xmat) < 200) {
x.strings <- apply(the.xmat, 1, paste, collapse = " ")
uniquex <- unique(x.strings)
if (is.list(the.xmat)) {
numeric.columns.list <- lapply(the.xmat, is.numeric)
numeric.columns <- unlist(numeric.columns.list)
} else {
numeric.columns <- apply(the.xmat, 2, is.numeric)
}
if(any(numeric.columns)) {
the.mean <- apply(the.xmat[, numeric.columns,drop = F], 2, mean)
the.sd <- sqrt(apply(the.xmat[, numeric.columns, drop = F], 2, var))
the.cv <- the.sd/the.mean
predictors <- get.x.columns(data.ld)[numeric.columns]
xsummary <- data.frame(predictors,
apply(the.xmat[, numeric.columns,drop = F], 2, min),
apply(the.xmat[, numeric.columns,drop = F], 2, max),
the.mean,
the.sd,
the.cv,
stringsAsFactors = F)
colnames(xsummary) <- c("predictor","min", "max", "mean", "sd", "cv")
out[["Summary of numeric columns in X matrix"]] <- xsummary
}
ncolx <- ncol(the.xmat)
c1 <- rep(1, length(uniquex))
the.table <- data.frame(the.xmat[1:length(uniquex),], c1, c1, c1, c1, c1, c1, c1, c1)
for(i in 1:length(uniquex)) {
the.stuff <- uniquex[i] == x.strings
the.table[i, ncolx + 1] <- min(the.response[the.stuff])
the.table[i, ncolx + 2] <- max(the.response[the.stuff])
the.mean <- mean(the.response[the.stuff])
if(min(the.response[the.stuff]) == max(the.response[the.stuff])) the.mean <- 0
the.table[i, ncolx + 3] <- the.mean
the.sd <- sqrt(var(the.response[the.stuff]))
if (is.na(the.sd)) the.sd <- 0
the.table[i, ncolx + 4] <- the.sd
the.table[i, ncolx + 5] <- sum(the.case.weights[the.stuff & the.censor.codes == 1])
the.table[i, ncolx + 6] <- sum(the.case.weights[the.stuff & the.censor.codes == 2])
the.table[i, ncolx + 7] <- sum(the.case.weights[the.stuff & the.censor.codes == 3])
the.table[i, ncolx + 8] <- sum(the.case.weights[the.stuff & the.censor.codes == 4])
the.table[i, ncolx + 9] <- sum(the.case.weights[the.stuff])
the.ones <- (1:nrow(the.response))[the.stuff]
for(j in 1:ncolx) {
if(is.factor(the.xmat[the.ones[1], j])) {
the.table[i, j] <- as.character(the.xmat[the.ones[1],j])
} else {
the.table[i, j] <- the.xmat[the.ones[1],j]
}
}
}
unique_combinations <- 1:nrow(the.table)
the.table <- cbind(unique_combinations, the.table)
colnames(the.table) <- c("",
names(get.x.columns(data.ld)),
"Min response",
"Max response",
"Mean response",
"SD response",
"Exact",
"R-cen",
"L-cen",
"Int-cen",
"Total")
check.zero <- function(x) { any(x != 0) }
some.censoring <- any(the.table[, ncolx + 1 + 9] != the.table[, ncolx + 1 + 5])
if(!some.censoring) the.table <- the.table[, -(ncolx + 1 + c(6, 7, 8))]
any.non.zero <- apply(the.table, 2, check.zero)
if(nrow(the.table) < print.limit) {
out[["Unique X conditions"]] <- the.table[, any.non.zero]
} else {
out[["Unique X conditions"]] <- paste0("Unique X conditions: ", nrow(the.table))
}
}
}
}
print(out, row.names = F)
results <- list(number.cases = sum(the.case.weights[not.dummy]))
invisible(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.