library(GFPLVCM) ### dependencies: MASS, fda, stats
n=100 ## sample size
pois_par=10 ## parameter for the Poission distribution to generate the observation times
order_1=4; order_2=4 ## order of the B-splines in the s and u directions
breaks=c(0,.2, .4, .6, .8, 1) ## knots of the B-splines
###########################################################
u_time=200; ## observation times for the functional variable in the u direction
len_k=50 ; ## number of basis functions to generate the functional parameter
gamma_real=0.3; ## true value of gamma
B = 4 ## signal of the functional parameter
pre_n <- 200 #### sample size of prediction
boot_R <- 1000 ### times for bootstrap
grid <- u_time
lambda_range <- seq(n^(-2), n^(-0.4), length=10) ## range of the tuning parameter lambda
h_range <- seq(n^(-1), n^(-0.2), length=10) ## range of the tuning parameter bandwidth
data <- Gen_data(n, pois_par, u_time, gamma_real, len_k, B) ### generate the data
para <- tuning_parameter_selection( lambda_range, h_range, data$y, data$x, data$z, order_1, order_2, breaks, pois_par, grid)
final_beta <- parameter_estimate_prediction(data$y, data$x, data$z, para$final_lambda, para$final_lambda, para$final_bd, order_1, order_2, breaks, pois_par,len_k, gamma_real, pre_n, B)
boot <- parameter_estimate_boot(data$y, data$x, data$z, para$final_lambda, para$final_lambda, para$final_bd, order_1, order_2, breaks, boot_R, final_beta$gamma_est, final_beta$b_est)
## do estimation, prediction and testing
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.