#' Scale an image raster array
#'
#' Scale the size of an image, in pixel. Process into a data frame.
#'
#' @param image A raster array from an image.
#' @param size_unit The unit by which the image will be scaled. Can be one of the following options: 'stitches', 'inches', or 'cm'
#' @param img_size Size of output image, in the unit determined by size_unit. Use a single value (e.g. \code{48}) for a square image.
#' Use a vector of two values for a rectangular image \code{c(width, height)}.
#' @param cloth_count Specify the aida cloth count to work with. Set to 16 by default.
#' @param brightness A value >1 will increase the brightness of the image while a positive value <1 will decrease the brightness.
#' @param warhol Array of values \code{c(1, 2, 3)} associated with R, G, B colour channels. Swap values in array to swap colour channels for a fun visual effect.
#' @format NULL
#' @usage NULL
#' @return A list with element \code{Img_scaled} containing a data frame of the x- & y-coordinates, R, G, B channels, and hex colour of each stitch (pixel).
#' @export
image_to_scaled <- function(image, size_unit = "stitches", img_size = 48,
cloth_count = 16, brightness = 1, warhol = 1:3){
#Adjust brightness. Max channel value is 1
if(brightness < 0 ){stop("Brightness should be a positive value. Use 1 for no change, >1 for lighter, <1 for darker.")}
image_b <- image*brightness
image_b[image_b>1] <- 1
if(is.null(size_unit)) {stop("Please use a valid size_unit. Options are 'stiches', 'inches', or 'cm'")}
if(!size_unit %in% c('stitches', 'inches', 'cm')) {stop("please use a valid size_unit. Options are 'stiches', 'inches', or 'cm'")}
if(is.null(cloth_count)) {stop("Please use a valid cloth_count. Typical sizes are: 11, 12, 14, 16, 18, 22, or 28")}
if(!is.numeric(cloth_count)) {stop("cloth_count should be a numeric value")}
# use option to set size using inches or cm, instead of default stitches
if(size_unit == "inches") {
# convert inches to stitches
img_size <- img_size * cloth_count
} else if(size_unit == "cm") {
# convert cm to inches
img_size <- img_size / 2.54
# convert inches to stitches
img_size <- img_size * cloth_count
}
#Only whole values for image size
img_size <- round(img_size, 0)
#RGB channel order as specified with the `warhol` input
col_chan <- order(warhol[1:3])
#Convert image to a data frame with RGB values
img <- dplyr::bind_rows(
list(
(as.data.frame(image_b[, , col_chan[1]]) %>%
dplyr::mutate(y=dplyr::row_number(), channel = "R")),
(as.data.frame(image_b[, , col_chan[2]]) %>%
dplyr::mutate(y=dplyr::row_number(), channel = "G")),
(as.data.frame(image_b[, , col_chan[3]]) %>%
dplyr::mutate(y=dplyr::row_number(), channel = "B"))
)
) %>%
tidyr::gather(x, value, -y, -channel) %>%
dplyr::mutate(x = as.numeric(gsub("V", "", x))) %>%
tidyr::spread(channel, value)
# If png, drop the transparent bricks
if(dim(image_b)[3] == 4){
transparent <- as.data.frame(image_b[, , 4]) %>%
dplyr::mutate(y=dplyr::row_number(), channel = "bg_transparent") %>%
tidyr::gather(x, value, -y, -channel) %>%
dplyr::mutate(x = as.numeric(gsub("V", "", x))) %>%
tidyr::spread(channel, value) %>%
dplyr::filter(bg_transparent < 1) %>%
dplyr::mutate(bg_transparent = TRUE)
img <- img %>%
dplyr::left_join(transparent, by = c("y", "x")) %>%
tidyr::replace_na(list(bg_transparent = FALSE))
} else {
img <- img %>%
dplyr::mutate(bg_transparent = FALSE)
}
#Wide or tall image? Shortest side should be `img_size` pixels
if(max(img$x) > max(img$y)){
img_scale_x <- max(img$x) / max(img$y)
img_scale_y <- 1
} else {
img_scale_x <- 1
img_scale_y <- max(img$y) / max(img$x)
}
#If only 1 img_size value, create a square image
if(length(img_size) == 1){
img_size2 <- c(img_size, img_size)
} else {
img_size2 <- img_size[1:2]
img_scale_x <- 1
img_scale_y <- 1
}
#Rescale the image
img2 <- img %>%
dplyr::mutate(y_scaled = (y - min(y))/(max(y)-min(y))*img_size2[2]*img_scale_y + 1,
x_scaled = (x - min(x))/(max(x)-min(x))*img_size2[1]*img_scale_x + 1) %>%
dplyr::select(-x, -y) %>%
dplyr::group_by(y = ceiling(y_scaled), x = ceiling(x_scaled)) %>%
#Get average R, G, B and convert it to hexcolour
dplyr::summarize_at(dplyr::vars(R, G, B, bg_transparent), mean) %>%
dplyr::mutate(bg_transparent = as.logical(round(bg_transparent))) %>%
dplyr::rowwise() %>%
dplyr::mutate(colour = rgb(R, G, B)) %>%
dplyr::ungroup() %>%
#Center the image
dplyr::filter(x <= stats::median(x) + img_size2[1]/2, x > stats::median(x) - img_size2[1]/2,
y <= stats::median(y) + img_size2[2]/2, y > stats::median(y) - img_size2[2]/2) %>%
#Flip y
dplyr::mutate(y = (max(y) - y) + 1)
out_list <- list()
out_list[["Img_scaled"]] <- img2
out_list[["dims"]] <- img_size2
out_list[["unit"]] <- size_unit
out_list[["cloth_count"]] <- cloth_count
return(out_list)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.