# calculate design-based stratified random sampling indices
#
# liz brooks
# 15 june 2020
# added
# last update: august 2021
# december 2021: added scalar for total area to get absolute index
#edited by Ben Levy January 2022
#read in results if needed
res <- readRDS("C:\\Users\\benjamin.levy\\Desktop\\Github\\READ-PDB-blevy2-toy\\Results\\IncrPop_ConstTemp\\res_TempCon_PopIncr.rds")
rm(list=ls(all=TRUE)) # Remove all variables, etc. from the session memory
library(tibble)
library(ggplot2)
library(plyr)
library(dplyr)
library(tidyr)
library(readr)
library(here)
source("TestScripts/Calc_strat_mean/fn_srs_survey_BENS.R")
#
# # # # names of species files to read in (GBhaddock)
# # file.spp <- "ADIOS_SV_164744_GBK_NONE_survey_dist_map_fixed.csv"
#
#
# # # names of species files to read in (GByellowtail flounder)
# file.spp <- "C:/Users/benjamin.levy/Desktop/NOAA/GIS_Stuff/From_Liz/survey_tow_latlon-20220107T192759Z-001/survey_tow_latlon/ADIOS_SV_172909_GBK_NONE_survey_dist_map_fixed.csv"
#
#
# # # names of files to read in (GBcod)
# # file.spp <- "ADIOS_SV_164712_GBK_NONE_survey_dist_map_fixed.csv"
#
#
# # # names of files to read in (GOMcod)
# # file.spp <- "ADIOS_SV_164712_GOM_NONE_survey_dist_map_fixed.csv"
#
#
# # note: instead of manually pointing to individual input files ====
# # can also use this code to get a list of all input files matching pattern, and then loop over those species
# sp.list <- list.files(here("C:/Users/benjamin.levy/Desktop/NOAA/GIS_Stuff/From_Liz/survey_tow_latlon-20220107T192759Z-001/survey_tow_latlon/"), pattern="*_survey_dist_map_fixed.csv")
#
# name of stratum area file ====
#file.sv.area <- "C:/Users/benjamin.levy/Desktop/NOAA/GIS_Stuff/From_Liz/strata_area.csv"
# read in survey area ====
#sv.area <- as_tibble(read.csv(here(file.sv.area) ) ) %>%
# select(-STRATUM_NAME) #I think this is removing the column "stratum_name"
#DEFINE INDIVIDUAL STRATUM AREAS IN SIMILAR MANNER AS ABOVE
stratum <- c(1,2,3,4)
STRATUM_AREA <- c(2500,2500,2500,2500) #100x100 grid so each corner has area 2500
sv.area <- as_tibble(data.frame(stratum,STRATUM_AREA))
# read in species file of tow by tow data from simulation
spp <- as_tibble(res$survey$log.mat,header=T)
spp.name <- as.character("spp2")
spp.stock <- as.character("Generic")
#spp.itis <- unique(spp$SPECIES_ITIS)
# get total area of stock ====
spp.strata <- unique(spp$stratum)
spp.area <- sum(sv.area$STRATUM_AREA[sv.area$stratum %in% spp.strata]) #TOTAL AREA OF ALL STRATA
# calculate SRS estimates ====
spp.srs <- srs_survey(df=spp, sa=sv.area, str=NULL, ta=1, sppname = spp.name ) # if strata=NULL, the function will use the unique strata set found in df
# if strata!=NULL, the function will use that vector of strata
spp.srs.rel.and.absolute <- spp.srs %>%
mutate(mean.yr.absolute=mean.yr*spp.area, sd.mean.yr.absolute=sd.mean.yr*spp.area,
CV.absolute=sd.mean.yr.absolute/mean.yr.absolute)
write.csv(spp.srs.rel.and.absolute, file=paste(spp.name, spp.stock, "_SRS_from_Rcode.csv", sep="."), row.names=F)
# Note: in spp.srs.rel.and.absolute, the relative mean index and sd are "mean.yr" and "sd.mean.yr"
# the mean index scaled by total area ("absolute abundance index") are "mean.yr.absolute" and "sd.mean.yr.absolute"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.