#' Concatenated Decomposition with Principal Component Analysis
#'
#' Concatenated decomposition of several matrices with Principal Component Analysis (PCA)
#'
#' @param dataset A list of dataset to be analyzed
#' @param group A list of grouping of the datasets, indicating the relationship between datasets
#' @param comp_num A vector indicates the dimension of each compoent
#' @param weighting Weighting of each dataset, initialized to be NULL
#' @param proj_dataset The datasets to be projected on
#' @param proj_group The grouping of projected data sets
#'
#' @importFrom RSpectra svds
#'
#' @return A list contains the component and the score of each dataset on every component after concatPCA algorithm
#'
#' @keywords pairwise, PCA
#'
#' @examples
#' dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
#' matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
#' group = list(c(1,2,3,4), c(1,2), c(3,4), c(1,3), c(2,4), c(1), c(2), c(3), c(4))
#' comp_num = c(2,2,2,2,2,2,2,2,2)
#' proj_dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
#' proj_group = list(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE))
#' res_concatPCA = concatPCA(dataset, group, comp_num, weighting = NULL, proj_dataset = proj_dataset, proj_group = proj_group)
#'
#' @export
concatPCA <- function(dataset, group, comp_num, weighting = NULL, proj_dataset = NULL, proj_group = NULL){
## Obtain names for dataset, gene and samples
dataset_name = datasetNameExtractor(dataset)
gene_name = geneNameExtractor(dataset)
sample_name = sampleNameExtractor(dataset)
group_name = groupNameExtractor(group)
## Normalize and Preprocess dataset
dataset = frameToMatrix(dataset)
dataset = normalizeData(dataset)
dataset = balanceData(dataset)
unweighted_dataset = dataset
dataset = weightData(dataset, weighting)
## Parameters to be initialized
N = length(dataset)
K = length(group)
M = sum(comp_num)
p = nrow(dataset[[1]])
N_dataset = unlist(lapply(dataset, ncol))
## Output the component and scores
list_component = list()
list_score = list()
for(j in 1 : N){
list_score[[j]] = list()
}
for(i in 1 : K){
list_component[[i]] = matrix(0, nrow = p, ncol = comp_num[i])
for(j in 1 : N){
list_score[[j]][[i]] = matrix(0, nrow = comp_num[i], ncol = N_dataset[j])
}
}
## Extract pairwise PCA from the datasets
for(i in 1 : K){
temp_dat = c()
temp_sample_n = c()
for(j in group[[i]]){
temp_dat = cbind(temp_dat, dataset[[j]])
temp_sample_n = c(temp_sample_n, ncol(dataset[[j]]))
}
svd_temp = svds(temp_dat, comp_num[i])
list_component[[i]] = svd_temp$u
for(j in 1 : length(group[[i]])){
list_score[[group[[i]][j]]][[i]] = diag(svd_temp$d) %*% t(svd_temp$v)[, ifelse(j == 1, 1, sum(temp_sample_n[1 : (j - 1)]) + 1) : sum(temp_sample_n[1 : j])]
}
}
## Assign name for components
list_component = compNameAssign(list_component, group_name)
list_component = geneNameAssign(list_component, gene_name)
list_score = scoreNameAssign(list_score, dataset_name, group_name)
list_score = sampleNameAssign(list_score, sample_name)
list_score = filterNAValue(list_score, dataset, group)
list_score = rebalanceData(list_score, group, dataset)
list_score = pveMultiple(dataset, group, comp_num, list_score, list_component)
## Project score
proj_list_score = list()
if(!is.null(proj_dataset)){
proj_sample_name = sampleNameExtractor(proj_dataset)
proj_dataset_name = datasetNameExtractor(proj_dataset)
proj_dataset = frameToMatrix(proj_dataset)
proj_dataset = normalizeData(proj_dataset)
proj_dataset = balanceData(proj_dataset)
for(i in 1 : length(proj_dataset)){
proj_list_score[[i]] = list()
for(j in 1 : length(proj_group[[i]])){
if(proj_group[[i]][j]){
proj_list_score[[i]][[j]] = t(list_component[[j]]) %*% proj_dataset[[i]]
}else{
proj_list_score[[i]][[j]] = NA
}
}
}
proj_list_score = scoreNameAssign(proj_list_score, proj_dataset_name, group_name)
proj_list_score = sampleNameAssign(proj_list_score, proj_sample_name)
}
return(list(linked_component_list = list_component, score_list = list_score, proj_score_list = proj_list_score))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.