BEMA | R Documentation |
Apply BEMA algorithm for spiked covariance proposed in the paper "Estimation of the number of spiked eigenvalues in a covariance matrix by bulk eigenvalue matching analysis""
BEMA(eigenvalue, p, n, alpha = 0.2, beta = 0.1)
eigenvalue |
a list of eigenvalues to choose from |
p |
dimension of the features |
n |
number of samples |
alpha |
a tuning parameter in the analysis, a default value is set to 0.2 |
beta |
a tuning parameter on computing quantile in Tracy-Widom, a default value is set to be 0.1 |
The total number of spikes extracted, K
x = matrix(rnorm(1000, 100), nrow = 1000)
eigen_x = svd(x)
eigen_out = list(eigenvalue = eigen_x$d^2 / 100, p = 1000, n = 100)
BEMA(eigen_out$eigenvalue, p = 1000, n = 100)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.