sepPCA | R Documentation |
Apply PCA (Principal Component Analysis) to a single data set
sepPCA(
dataset,
comp_num,
weighting = NULL,
enable_normalization = TRUE,
column_sum_normalization = FALSE,
screen_prob = NULL
)
dataset |
A dataframe/matrix to be decomposed |
comp_num |
Number of PCs to be extracted |
weighting |
Weighting of each dataset, initialized to be NULL |
enable_normalization |
An argument to decide whether to use normalizaiton or not, default is TRUE |
column_sum_normalization |
An argument to decide whether to use column sum normalization or not, default it FALSE |
screen_prob |
A vector of probabilies for genes to be chosen |
A list of scores and component
dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
comp_num = 2
res_sepPCA = sepPCA(dataset, comp_num)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.