concatNMF | R Documentation |
Concatenated decomposition of several matrices with Nonnegative Matrix Factorization (NMF)
concatNMF(
dataset,
group,
comp_num,
weighting = NULL,
perturbation = 1e-04,
proj_dataset = NULL,
proj_group = NULL,
enable_normalization = TRUE,
column_sum_normalization = FALSE,
screen_prob = NULL
)
dataset |
A list of dataset to be analyzed |
group |
A list of grouping of the datasets, indicating the relationship between datasets |
comp_num |
A vector indicates the dimension of each compoent |
weighting |
Weighting of each dataset, initialized to be NULL |
perturbation |
the perturbation of the 0 element in the analysis |
proj_dataset |
The dataset(s) to be projected on. |
proj_group |
A listed of boolean combinations indicating which groupings should be used for each projected dataset.The length of proj_group should match the length of proj_dataset, and the length of each concatenated boolean combination should match the length of the parameter group. |
enable_normalization |
An argument to decide whether to use normalizaiton or not, default is TRUE |
column_sum_normalization |
An argument to decide whether to use column sum normalization or not, default it FALSE |
screen_prob |
A vector of probabilies for genes to be chosen |
A list contains the component and the score of each dataset on every component after concatNMF algorithm
dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50),
matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
group = list(c(1,2,3,4), c(1,2), c(3,4), c(1,3), c(2,4), c(1), c(2), c(3), c(4))
comp_num = c(2,2,2,2,2,2,2,2,2)
proj_dataset = list(matrix(runif(5000, 1, 2), nrow = 100, ncol = 50))
proj_group = list(c(TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE))
res_concatNMF = concatNMF(
dataset,
group,
comp_num,
proj_dataset = proj_dataset,
proj_group = proj_group)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.