#' Compute Density
#'
#' Compute density and cumulative density of change score for eCDF plot. The density is
#' smoothed out using the kernel density and N datapoints for EACH anchor group
#'
#' @param dat pass the dataframe, must contain the anchor group and the change score
#' @param anchor.group indicate the name of the anchor group
#' @param time.var variable of the Time in the dataframe - PLEASE CHECK THAT THIS IS CORRECTLY ORDERED, default is Time
#' @param timepoint default here is to just use the final timepoint, e.g., "Time_4". Please be sure to have
#' ordered your time variable correctly.
#' @param change.score indicate the name of the PRO change score
#' @return character vector
#' @export
compute_density_smoothed <- function(
dat = NULL,
anchor.group = NULL,
time.var = NULL,
timepoint = NULL, #default is the final timepoint; please prperly order your time variable
change.score = NULL
){
# Only acceptable defaul is for the timepoint, rest throw an error if unspecified
if (is.null(dat)) stop('Please specify dataframe in `compute_ecdf()` ')
if (is.null(anchor.group)) stop('Please specify anchor.group in `compute_ecdf()` ')
if (is.null(time.var)) stop('Please specify time.var in `compute_ecdf()` ')
if (is.null(change.score)) stop('Please specify change.score in `compute_ecdf()` ')
# Select Final Timepoint:
if (is.null(timepoint)) {
final.timepoint <- sort(unique(dat[, time.var, drop = T]), decreasing = T)[1]
} else {
final.timepoint <- timepoint
}
# Reduce the dataframe:
dat <- dat[which(dat[ , time.var] == final.timepoint), ]
dat <- dat[, c(anchor.group, change.score), drop = F]
# Initalize:
#dat$CDF <- NA
dat$density_x <- NA
dat$density_y <- NA
# Range of change score:
rr <- c(floor(min(dat[,change.score, drop = T], na.rm = T)),
ceiling(max(dat[,change.score, drop = T], na.rm = T)))
# dat$lower_ci <- NA
# dat$upper_ci <- NA
# VERY IMPORTANT STEP:
# Order the delta values WITHIN each group
owg <- with(dat, order( get(anchor.group), get(change.score)))
dat <- dat[owg, ]
#this will order the delta values from least to greatest stratified on the anchor group
#loop this over the groups:
groups <- dat[, anchor.group, drop = T]
groups <- unique(groups)
# Initialize full data frame:
# Expanded idea - make sure all anchor groups have eCDF values
# across entire range of PRO scores
N <- length(dat[, change.score, drop = T])
df.full <- data.frame(#'CDF' = rep(NA, each = N*length(groups)),
'density_x' = rep(NA, each = N*length(groups)),
'density_y' = rep(NA, each = N*length(groups)),
'CDF' = rep(NA, each = N*length(groups))
)
df.full[, anchor.group] <- rep(groups, each = N)
for(gg in groups){
# pull change scores in group
dd <- which(dat[, anchor.group, drop = T] == gg)
dn <- dat[dd, change.score, drop = T]
# Density
# Computed using dn, only change scores from that anchor group
# However, the density out is computed using the full range of scores
# This will yield a better looking eCDF (well, that and the kernel smoothing)
P <- density(dn,
kernel='gaussian',
bw = 'SJ',
n = N, # value was set above
#n = length(dat[, change.score, drop = T]),
from = rr[1],
to = rr[2],
#from=min(dat[, change.score, drop = T], na.rm = T) - 1,
#to=max(dat[, change.score, drop = T], na.rm = T) + 1,
na.rm = T
)
df.full[which(df.full$anchor.group == gg), 'density_x'] <- P$x
df.full[which(df.full$anchor.group == gg), 'density_y'] <- P$y
# Test:
df.full[which(df.full$anchor.group == gg), 'CDF'] <- cumsum(P$y)/sum(P$y)
}# end loop over anchor groups
return(df.full)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.