pathDat <- R.utils::Arguments$getWritablePath("Data_sim_20181012")
pathMeth <- R.utils::Arguments$getWritablePath("Data_Results_20181012")
S <- 50
nclust=4
n_byClust=c(10,20,5,25)
nbCPU=15
grid.noise <- c(0.1, 0.2, 0.5, 1)
grid.param <- list(noiseD1=c(0.2, 0.5, 0.1, 0.2),
noiseD2=c(0.1, 0.1, 0.5, 0.2)/10,
noiseD3=c(0.1, 0.1, 0.1, 0.5)*3)
props <- c(0.005, 0.01, 0.02)
library("parallel")
for(ii in 1:4){
pathDat_sim <- R.utils::Arguments$getWritablePath(sprintf("%s/Benchmark%s", pathDat, ii))
pathMeth_sub <- R.utils::Arguments$getWritablePath(sprintf("%s/Benchmark%s", pathMeth, ii))
list.sim <- list.files(pathDat_sim, full.names = TRUE) %>% lapply(readRDS)
data <- lapply(list.sim, function (ll) ll$data)
remove_zero <- function (dat){
lapply(dat, function(dd){
idx <- which(colSums(dd)==0)
if(length(idx)!=0){
return(dd[, -idx])
}else{
return(dd)
}
})
}
data_filter <- data %>% lapply(remove_zero)
print("SNF")
SNFresults <- mclapply(data, IntMultiOmics, method="SNF", K=4, mc.cores = nbCPU)
saveRDS(SNFresults, file=file.path(pathMeth_sub, sprintf("SNF_res.rds")))
print("kernel")
Kernelresults <- mclapply(data_filter, IntMultiOmics, method="MixKernel", K=4, mc.cores = nbCPU)
saveRDS(Kernelresults, file=file.path(pathMeth_sub, sprintf("Kernel_res.rds")))
print("MCIA")
MCIAresults <- mclapply(data_filter, IntMultiOmics, method="MCIA", K=4, mc.cores = nbCPU)
saveRDS(MCIAresults, file=file.path(pathMeth_sub, sprintf("MCIA_res.rds")))
print("Mocluster")
Moaresults <- mclapply(data, IntMultiOmics, method="Mocluster", K=4, ncomp=4, k=c(0.05,0.4, 0.1), mc.cores = nbCPU)
saveRDS(Moaresults, file=file.path(pathMeth_sub, sprintf("Mocluster_res.rds")))
print("RGCCA")
RGCCAresults <- mclapply(data, IntMultiOmics, method="RGCCA", K=4, mc.cores = nbCPU)
saveRDS(RGCCAresults, file=file.path(pathMeth_sub, sprintf("RGCCA_res.rds")))
print("NMF")
NMFresults <- mclapply(data_filter, IntMultiOmics, method="intNMF", K=4, mc.cores = nbCPU)
saveRDS(NMFresults, file=file.path(pathMeth_sub, sprintf("NMF_res.rds")))
print("SGCCA")
SGCCAresults <- mclapply(data_filter, IntMultiOmics, method="SGCCA", K=4, c1= c(0.3, 0.3,0.4),
ncomp=rep(3, 3), mc.cores = nbCPU)
saveRDS(SGCCAresults, file=file.path(pathMeth_sub, sprintf("SGCCA_res.rds")))
print("icluster")
iCluster_results <- mclapply(data_filter, IntMultiOmics, method="iCluster", K=3, lambda= c(0.03, 0.03,0.03),
type=c("gaussian", "binomial", "gaussian"), mc.cores = nbCPU)
saveRDS(iCluster_results, file=file.path(pathMeth_sub, sprintf("iCluster_res.rds")))
print("MOFA")
Mofaresults <- lapply(1:length(data_filter), function (dd) {
IntMultiOmics(data_filter[[dd]], method="MOFA", K=4)
}) %>% save(file=file.path(pathMeth_sub, sprintf("MOFA_res.rds")))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.