Description Usage Arguments Value Author(s) See Also Examples
By default, all droplets classified as "N/A" or "Rain" will be removed. Including these droplets is useful for visualisation purposes, but they could be a problem in some scenarios, e.g. if we wish to use the classification as a training data set.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | removeDropletClasses(
droplets,
...,
classesToRemove = NULL,
keepUnclassified = FALSE
)
## S4 method for signature 'data.frame'
removeDropletClasses(
droplets,
cMethod = "class",
classesToRemove = NULL,
keepUnclassified = FALSE
)
## S4 method for signature 'ddpcrWell'
removeDropletClasses(
droplets,
cMethod,
classesToRemove = NULL,
keepUnclassified = FALSE
)
## S4 method for signature 'ddpcrPlate'
removeDropletClasses(
droplets,
cMethod,
classesToRemove = NULL,
keepUnclassified = FALSE
)
|
droplets |
A |
... |
Other parameters depending on the type of |
classesToRemove |
A vector of character strings corresponding to the
classes that should be removed. Defaults to |
keepUnclassified |
A logical flag determining whether unclassified
droplets (i.e. "Rain" or "N/A") should be kept. Defaults to |
cMethod |
This is the name or column number corresponding to the
classification in |
If a ddpcrWell
object is given, return a data frame
corresponding to droplets
with the given droplet classes removed.
If a ddpcrPlate
object is given, return a list of data frames
instead.
Anthony Chiu, anthony.chiu@cruk.manchester.ac.uk
This function can remove "N/A" droplets from classifications
produced by gridClassify
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ## Take a data frame and transform it into the right format.
aWell <- KRASdata[["E03"]]
aWell$Cluster <- relabelClasses(aWell, classCol="Cluster")
## Add rain using the Mahalanobis distance.
aWell$ClusterMahRain <-
mahalanobisRain(aWell, cMethod="Cluster", fullTable=FALSE)
table(aWell$ClusterMahRain)
## Suppose we want to use this for training. Remove the "Rain" droplets.
aWellCleaned <- removeDropletClasses(aWell, cMethod="ClusterMahRain")
table(aWellCleaned$ClusterMahRain)
## All of the above works with ddpcrWell objects.
aWell <- ddpcrWell(well=KRASdata[["E03"]])
aWell <- mahalanobisRain(aWell, cMethod="Cluster")
trainingData <- removeDropletClasses(aWell, cMethod="ClusterMahRain")
table(wellClassification(aWell, "ClusterMahRain"))
table(trainingData$ClusterMahRain)
## Likewise for ddpcrPlate objects we can create the training data.
krasPlate <- ddpcrPlate(wells=KRASdata[c("E03", "F03", "G03")])
krasPlate <- mahalanobisRain(krasPlate, cMethod="Cluster")
trainingData <- removeDropletClasses(krasPlate, cMethod="ClusterMahRain")
cl <- plateClassification(krasPlate, cMethod="ClusterMahRain")
cl <- unlist(cl)
table(cl)
td <- do.call(rbind, trainingData)
table(td$ClusterMahRain)
## We could also remove other droplet classes, such as the "PN" and "PP"
## clusters.
noPNPP <- removeDropletClasses(krasPlate, cMethod="ClusterMahRain",
classesToRemove=c("PN", "PP"))
td <- do.call(rbind, noPNPP)
table(td$ClusterMahRain)
## The same could be done, but with the "Rain" retained.
noPNPPWithRain <- removeDropletClasses(krasPlate, cMethod="ClusterMahRain",
classesToRemove=c("PN", "PP"),
keepUnclassified=TRUE)
td <- do.call(rbind, noPNPPWithRain)
table(td$ClusterMahRain)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.