test_that("Survival outcomes", {
id <- 'id'
time_points <- 7
time_name <- 't0'
covnames <- c('L1', 'L2', 'A')
outcome_name <- 'Y'
outcome_type <- 'survival'
covtypes <- c('binary', 'bounded normal', 'binary')
histories <- c(lagged, lagavg)
histvars <- list(c('A', 'L1', 'L2'), c('L1', 'L2'))
covparams <- list(covmodels = c(L1 ~ lag1_A + lag_cumavg1_L1 + lag_cumavg1_L2 +
L3 + t0,
L2 ~ lag1_A + lag_cumavg1_L1 +
lag_cumavg1_L2 + L3 + t0,
A ~ lag1_A + L1 + L2 + lag_cumavg1_L1 +
lag_cumavg1_L2 + L3 + t0))
ymodel <- Y ~ A + L1 + L2 + L3 + lag1_A + lag1_L1 + lag1_L2 + t0
expect_no_error(
gform_basic <- gformula(obs_data = basicdata_nocomp, id = id,
time_points = time_points,
time_name = time_name, covnames = covnames,
outcome_name = outcome_name,
outcome_type = outcome_type, covtypes = covtypes,
covparams = covparams, ymodel = ymodel,
intervention1.A = list(static, rep(0, time_points)),
intervention2.A = list(static, rep(1, time_points)),
int_descript = c('Never treat', 'Always treat'),
histories = histories, histvars = histvars,
basecovs = c('L3'), intcomp = c(1,2),
nsimul = 2501,
seed = 1234, nsamples = 2,
restrictions = list(c('L2', 'L1 == 0', simple_restriction, 0)))
)
compevent_name <- 'D'
compevent_model <- D ~ A + L1 + L2 + lag1_A + lag2_A + lag3_A
expect_no_error(
gform_basic <- gformula(obs_data = basicdata, id = id,
time_points = time_points,
time_name = time_name, covnames = covnames,
outcome_name = outcome_name,
outcome_type = outcome_type,
compevent_name = compevent_name,
covtypes = covtypes,
covparams = covparams, ymodel = ymodel,
compevent_model = compevent_model,
intervention1.A = list(static, rep(0, time_points)),
intervention2.A = list(static, rep(1, time_points)),
int_descript = c('Never treat', 'Always treat'),
histories = histories, histvars = histvars,
basecovs = c('L3'), intcomp = c(1,2),
nsimul = 2500,
seed = 1234, nsamples = 2,
ci_method = 'normal',
model_fits = TRUE,
sim_trunc = FALSE,
restrictions = list(c('L2', 't0%in%c(0, 3, 6)',
carry_forward)))
)
})
test_that("Continuous outcomes", {
library('Hmisc')
id <- 'id'
time_name <- 't0'
covnames <- c('L1', 'L2', 'A')
outcome_name <- 'Y'
outcome_type <- 'continuous_eof'
covtypes <- c('categorical', 'normal', 'binary')
histories <- c(lagged)
histvars <- list(c('A', 'L1', 'L2'))
covparams <- list(covmodels = c(L1 ~ lag1_A + lag1_L1 + t0 +
rcspline.eval(lag1_L2, knots = c(-1, 0, 1)),
L2 ~ lag1_A + L1 + lag1_L1 + lag1_L2 + t0,
A ~ lag1_A + L1 + L2 + lag1_L1 + lag1_L2 + t0))
ymodel <- Y ~ A + L1 + L2 + lag1_A + lag1_L1 + lag1_L2
expect_no_error(
gform_cont_eof <- gformula(obs_data = continuous_eofdata,
id = id, time_name = time_name,
covnames = covnames, outcome_name = outcome_name,
outcome_type = outcome_type, covtypes = covtypes,
covparams = covparams, ymodel = ymodel,
intervention1.A = list(static, rep(0, 7), int_times = 0:5),
intervention2.A = list(static, rep(1, 7)),
int_descript = c('Never treat', 'Always treat'),
histories = histories, histvars = histvars,
nsimul = 2500, seed = 1234,
nsamples = 2)
)
})
test_that("Binary outcomes", {
binary_eofdata$time_f <- ifelse(binary_eofdata$time <= 1, 0,
ifelse(binary_eofdata$time <= 3, 1,
ifelse(binary_eofdata$time <= 5, 2, 3)))
binary_eofdata$time_f <- as.factor(binary_eofdata$time_f)
outcome_type <- 'binary_eof'
id <- 'id_num'
time_name <- 'time'
covnames <- c('cov1', 'cov2', 'treat', 'time_f')
outcome_name <- 'outcome'
histories <- c(lagged, cumavg)
histvars <- list(c('treat', 'cov1', 'cov2'), c('cov1', 'cov2'))
covtypes <- c('binary', 'zero-inflated normal', 'normal', 'categorical time')
covparams <- list(covmodels = c(cov1 ~ lag1_treat + lag1_cov1 + lag1_cov2 +
cov3 + time_f,
cov2 ~ lag1_treat + cov1 + lag1_cov1 +
lag1_cov2 + cov3 + time_f,
treat ~ lag1_treat + cumavg_cov1 +
cumavg_cov2 + cov3 + time_f,
NA))
ymodel <- outcome ~ treat + cov1 + cov2 + lag1_cov1 + lag1_cov2 + cov3
expect_no_error(
gform_bin_eof <- gformula(obs_data = binary_eofdata,
outcome_type = outcome_type, id = id,
time_name = time_name, covnames = covnames,
outcome_name = outcome_name, covtypes = covtypes,
covparams = covparams, ymodel = ymodel,
intervention1.treat = list(threshold, 1, Inf),
int_descript = 'Threshold - lower bound 1',
histories = histories,
histvars = histvars, basecovs = c("cov3"),
seed = 1234, parallel = TRUE,
nsimul = 2501, ncores = 2)
)
})
test_that("IPCW", {
covnames <- c('L', 'A')
histories <- c(lagged)
histvars <- list(c('A', 'L'))
ymodel <- Y ~ L + A
covtypes <- c('binary', 'normal')
covparams <- list(covmodels = c(L ~ lag1_L + lag1_A,
A ~ lag1_L + L + lag1_A))
censor_name <- 'C'
censor_model <- C ~ L
expect_no_error(
res_censor <- gformula(obs_data = censor_data, id = 'id',
time_name = 't0', covnames = covnames,
outcome_name = 'Y', outcome_type = 'survival',
censor_name = censor_name, censor_model = censor_model,
covtypes = covtypes,
covparams = covparams, ymodel = ymodel,
histories = histories, histvars = histvars,
seed = 1234, sim_data_b = T)
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.