server_output_lmc <- function(input, output, server_env) {
output$groupSelector_3 <- renderUI({
if (MEDSET_FLAG) {
results <- server_env$dataset()
gr_lists <- results@parameters$cg_subsets
GROUPS <- 1:length(gr_lists)
if (is.null(names(gr_lists))) {
names(GROUPS) <- sapply(gr_lists, paste, collapse = "_")
} else{
names(GROUPS) <- names(gr_lists)
}
selectInput('cg_group_3', 'Technical CpG subset:', GROUPS,selected=server_env$Selected$CG)
}
})
output$Kselector_3 <- renderUI({
Ks <- server_env$dataset()@parameters$Ks
selectInput('K_3', 'Number of LMCs (k)', Ks, selected=server_env$Selected$K)
})
output$lambdaSelector_3 <- renderUI({
if (MEDSET_FLAG) {
LAMBDAS <- server_env$dataset()@parameters$lambdas
LAMBDA.IDS <- 1:length(server_env$dataset()@parameters$lambdas)
names(LAMBDA.IDS) <- as.character(LAMBDAS)
selectInput('lambda_3', 'Lambda value', LAMBDA.IDS, selected=server_env$Selected$LAMBDA)
}
})
output$componentPlotT <- renderUI({
p_type <-
c(
"dendrogram",
"extremality",
"heatmap",
"similarity graph",
"boxplot"
)
if(TRUE_T_FLAG && (!is.null(input$useReferences) && (input$useReferences))){
p_type<-c(p_type, "scatterplot all",
"scatterplot matching",
"scatterplot avg matching")
}
if (!is.null(input$K_3) && (as.integer(input$K_3) > 2)){
p_type<-c(p_type, "mds plot")
}
if (METH_DATA_FLAG && !is.null(input$useReferences) && (input$useReferences)) {
p_type <- c(p_type, "distance to center")
}
selectInput('componentPlotType', 'Plot type',
p_type,
selected = 1)
})
output$componentSelector <- renderUI({
comps <- c(1:input$K_3, NA)
names(comps) <- c(as.character(1:input$K_3), "sum best matching")
selectInput(
'component',
'LMC:',
comps,
selectize = TRUE,
multiple = TRUE,
selected = 1
)
})
output$cgVar<-renderUI({
if(TRUE_T_FLAG){
checkboxInput("cgVarSubset", "Select top-variable CpGs:", value = FALSE)
}
})
output$topSDcgsSelector <- renderUI({
gr <- as.integer(input$cg_group_3)
ind <- server_env$getCGsubset_3()
sliderInput(
'topSDcpgs',
'Select top SD cgs',
min = 1,
max = length(ind),
value = length(ind),
step = 500,
round = 0
)
})
output$sampleColorSelector_3 <- renderUI({
pd <- server_env$getPhenoData()
if (!is.null(pd)) {
siteannot <- colnames(pd)
} else{
siteannot <- character()
}
selectInput('mdsDataCat_3',
'Color samples by:',
c("none", siteannot),
selectize = TRUE)
})
output$pointColorSelector <- renderUI({
cats <- names(server_env$getCGcategories())
feats <- names(server_env$getCGquantFeatureSettings())
selectInput('pointCategory',
'Color data points by:',
c("none", cats, feats),
selectize = TRUE)
})
output$pointFilter <- renderUI({
if ("pointCategory" %in% names(input) &&
input$pointCategory != "none") {
if (input$pointCategory %in% names(server_env$getCGcategories())) {
list(checkboxInput('CGsubsetToCategory', "limit to", value = FALSE))
} else if (input$pointCategory %in% names(server_env$getCGquantFeatureSettings())) {
features <- server_env$getCGquantFeatureSettings()
list(
sliderInput(
'quantFilterMin',
"Minimal value:",
min = features[[input$pointCategory]]$min,
max = features[[input$pointCategory]]$max,
value = features[[input$pointCategory]]$min
),
sliderInput(
'quantFilterMax',
"Maximal value:",
min = features[[input$pointCategory]]$min,
max = features[[input$pointCategory]]$max,
value = features[[input$pointCategory]]$max
)
)
}
}
})
output$CGcategorySubsetSelector <- renderUI({
if ("CGsubsetToCategory" %in% names(input) &&
input$CGsubsetToCategory && input$pointCategory != "none") {
cats <- getCGcategories()
features <- 1:length(cats[[input$pointCategory]])
names(features) <- cats[[input$pointCategory]]
selectInput(
'pointSubset',
'Show only:',
features,
selectize = TRUE,
multiple = TRUE,
selected = 1
)
}
})
output$geneSetSelector <- renderUI({
gene.sets <- getGeneSets()
selectInput('geneSet', 'Gene set:', names(gene.sets), selectize = TRUE)
})
output$locusSelector <- renderUI({
gene.sets <- getGeneSets()
selectInput('locus', 'Gene:', gene.sets[[input$geneSet]], selectize =
TRUE)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.