#' Declare a reveal outcomes step
#'
#' Potential outcomes declarations indicate what outcomes would obtain for different possible values of assignment variables.
#' To reveal actual outcomes we combine assignments with potential outcomes. \code{declare_reveal} provides information on how this
#' revelation should be implemented, identifying the relevant assignment variables (for example created by \code{declare_assignment}) and outcome variables.
#' Revelation steps are usefully included after declaration of all assignments of conditions required to determine the realized outcome.
#' If a revelation is not declared DeclareDesign will try to guess appropriate revelations though explicit revelation is recommended.
#'
#' @inheritParams declare_internal_inherit_params
#'
#' @export
declare_reveal <- make_declarations(reveal_outcomes_handler, "reveal")
#' @param data A data.frame containing columns for assignment and potential outcomes.
#'
#' @param outcome_variables The outcome prefix(es) of the potential outcomes.
#' @param assignment_variables Unquoted name(s) of the assignment variable(s).
#' @param attrition_variables Unquoted name of the attrition variable.
#'
#' @details
#'
#' \code{declare_reveal} declares how outcomes should be realized.
#' A "revelation" uses the random assignment to pluck out the correct potential outcomes (Gerber and Green 2012, Chapter 2).
#' If you create a simple design (with assignment variable Z and outcome variable Y) with the + operator but omit a reveal declaration, DeclareDesign will attempt to insert a revelation step automatically.
#' If you have multiple outcomes to reveal or different names for the outcome or assignment variables, use \code{declare_reveal} to customize which outcomes are revealed.
#' Revelation requires that every named outcome variable is a function of every named assignment variable within a step. Thus if multiple outcome variables depend on different assignment variables, multiple revelations are needed.
#'
#'
#'
#' @importFrom rlang enexpr expr_text
#'
#' @export
#' @rdname declare_reveal
#'
#' @examples
#'
#' my_population <- declare_population(N = 100, noise = rnorm(N))
#'
#' my_potential_outcomes <- declare_potential_outcomes(
#' Y_Z_0 = noise, Y_Z_1 = noise +
#' rnorm(N, mean = 2, sd = 2))
#'
#' my_assignment <- declare_assignment(m = 50)
#'
#' my_reveal <- declare_reveal()
#'
#' design <- my_population +
#' my_potential_outcomes +
#' my_assignment +
#' my_reveal
#'
#' design
#'
#' # Here the + operator results in the same design being
#' # created, because it automatically adds a declare_reveal step.
#'
#' design <- my_population + my_potential_outcomes + my_assignment
#'
#' # Declaring multiple assignment variables or multiple outcome variables
#'
#' population <- declare_population(N = 10)
#' potentials_1 <- declare_potential_outcomes(Y1 ~ Z)
#' potentials_2 <- declare_potential_outcomes(Y2 ~ 1 + 2*Z)
#' potentials_3 <- declare_potential_outcomes(Y3 ~ 1 - X*Z, conditions = list(X = 0:1, Z = 0:1))
#' assignment_Z <- declare_assignment(assignment_variable = "Z")
#' assignment_X <- declare_assignment(assignment_variable = "X")
#' reveal_1 <- declare_reveal(outcome_variables = c("Y1", "Y2"), assignment_variables = "Z")
#' reveal_2 <- declare_reveal(outcome_variables = "Y3", assignment_variables = c("X", "Z"))
#'
#' # Note here that the reveal cannot be done in one step, e.g. by using
#' # declare_reveal(outcome_variables = c("Y1", "Y2", "Y3"),
#' # assignment_variables = c("X","Z"))
#' # The reason is that in each revelation all outcome variables should be a
#' # function of all assignment variables.
#'
#' # declare_reveal can also be used to declare outcomes that include attrition
#'
#' population <- declare_population(N = 100, age = sample(18:95, N, replace = TRUE))
#'
#' potential_outcomes_Y <- declare_potential_outcomes(Y ~ .25 * Z + .01 * age * Z)
#'
#' assignment <- declare_assignment(m = 25)
#'
#' potential_outcomes_attrition <-
#' declare_potential_outcomes(R ~ rbinom(n = N, size = 1, prob = pnorm(Y_Z_0)))
#'
#' reveal_attrition <- declare_reveal(outcome_variables = "R")
#' reveal_outcomes <- declare_reveal(outcome_variables = "Y", attrition_variables = "R")
#'
#' my_design <- population + potential_outcomes_Y + potential_outcomes_attrition +
#' my_assignment + reveal_attrition + reveal_outcomes
#'
reveal_outcomes_handler <- function(data = NULL,
outcome_variables = Y,
assignment_variables = Z,
attrition_variables = NULL, ...) {
if (!is.character(outcome_variables)) {
stop("outcome_variables should already be converted to characters")
}
if (!is.character(assignment_variables)) {
stop("assignment_variables should already be converted to characters")
}
if (!is.null(attrition_variables) &&
!is.character(attrition_variables)) {
stop("attrition_variables should already be converted to characters")
}
for (i in seq_along(outcome_variables)) {
data[, outcome_variables[i]] <- switching_equation(
data,
outcome_variables[i],
assignment_variables
)
}
for (i in seq_along(attrition_variables)) {
response <- switching_equation(
data,
attrition_variables[i],
assignment_variables
)
data[response == 0, outcome_variables[i]] <- NA
}
data
}
validation_fn(reveal_outcomes_handler) <- function(ret, dots, label) {
declare_time_error_if_data(ret)
dots <- reveal_nse_helper_dots(dots, "outcome_variables", reveal_outcomes_handler)
dots <- reveal_nse_helper_dots(dots, "assignment_variables", reveal_outcomes_handler)
dots <- reveal_nse_helper_dots(dots, "attrition_variables", reveal_outcomes_handler)
ret <- build_step(
currydata(
reveal_outcomes_handler,
dots,
strictDataParam = attr(ret, "strictDataParam")
),
handler = reveal_outcomes_handler,
dots = dots,
label = label,
step_type = attr(ret, "step_type"),
causal_type = attr(ret, "causal_type"),
call = attr(ret, "call")
)
structure(ret,
step_meta = dots[c(
"attrition_variable",
"outcome_variables",
"assignment_variables"
)]
)
}
switching_equation <- function(data, outcome, assignments) {
potential_cols <- mapply(paste,
assignments,
data[, assignments, drop = FALSE],
sep = "_",
SIMPLIFY = FALSE
)
potential_cols <- do.call(paste, c(outcome, potential_cols, sep = "_"))
upoc <- unique(potential_cols)
if (!(all(upoc %in% colnames(data)))) {
stop(
"Must provide all potential outcomes columns referenced by the assignment variable (",
assignments,
").\n",
"`data` did not include:\n",
paste(" * ", sort(setdiff(
upoc, colnames(data)
)), collapse = "\n")
)
}
data <- data[, upoc, drop = FALSE]
R <- seq_len(nrow(data))
C <- match(potential_cols, colnames(data))
as.data.frame(data)[cbind(R, C)]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.