context("Unit tests for PLR")
library("mlr3learners")
lgr::get_logger("mlr3")$set_threshold("warn")
on_cran = !identical(Sys.getenv("NOT_CRAN"), "true")
if (on_cran) {
test_cases = expand.grid(
dml_procedure = "dml1",
score = "IV-type",
stringsAsFactors = FALSE)
} else {
test_cases = expand.grid(
dml_procedure = c("dml1", "dml2"),
score = c("IV-type", "partialling out"),
stringsAsFactors = FALSE)
}
test_cases[".test_name"] = apply(test_cases, 1, paste, collapse = "_")
patrick::with_parameters_test_that("Unit tests for PLR:",
.cases = test_cases, {
n_folds = 2
n_rep_boot = 498
set.seed(3141)
# load learner by name
learner_name = "regr.rpart"
params = list("cp" = 0.01, "minsplit" = 20)
set.seed(123)
if (score == "IV-type") {
ml_g = learner_name
} else {
ml_g = NULL
}
double_mlplr = DoubleMLPLR$new(
data = data_plr$dml_data,
ml_l = learner_name,
ml_m = learner_name,
ml_g = ml_g,
dml_procedure = dml_procedure,
n_folds = n_folds,
score = score)
# set params for nuisance part m
double_mlplr$set_ml_nuisance_params(
learner = "ml_m",
treat_var = "d",
params = params)
# set params for nuisance part l
double_mlplr$set_ml_nuisance_params(
learner = "ml_l",
treat_var = "d",
params = params)
if (score == "IV-type") {
# set params for nuisance part g
double_mlplr$set_ml_nuisance_params(
learner = "ml_g",
treat_var = "d",
params = params)
}
double_mlplr$fit()
theta = double_mlplr$coef
se = double_mlplr$se
t = double_mlplr$t_stat
pval = double_mlplr$pval
ci = double_mlplr$confint(level = 0.95, joint = FALSE)
double_mlplr$bootstrap(method = "normal", n_rep = n_rep_boot)
boot_theta = double_mlplr$boot_coef
set.seed(123)
loaded_learner = mlr3::lrn("regr.rpart", "cp" = 0.01, "minsplit" = 20)
if (score == "IV-type") {
ml_g = loaded_learner
} else {
ml_g = NULL
}
double_mlplr_loaded = DoubleMLPLR$new(
data = data_plr$dml_data,
ml_l = loaded_learner,
ml_m = loaded_learner,
ml_g = ml_g,
dml_procedure = dml_procedure,
n_folds = n_folds,
score = score)
double_mlplr_loaded$fit()
theta_loaded = double_mlplr_loaded$coef
se_loaded = double_mlplr_loaded$se
t_loaded = double_mlplr_loaded$t_stat
pval_loaded = double_mlplr_loaded$pval
ci_loaded = double_mlplr_loaded$confint(level = 0.95, joint = FALSE)
double_mlplr$bootstrap(method = "normal", n_rep = n_rep_boot)
boot_theta_loaded = double_mlplr$boot_coef
set.seed(123)
semiloaded_learner = mlr3::lrn("regr.rpart")
if (score == "IV-type") {
ml_g = semiloaded_learner
} else {
ml_g = NULL
}
double_mlplr_semiloaded = DoubleMLPLR$new(
data = data_plr$dml_data,
ml_l = semiloaded_learner,
ml_m = semiloaded_learner,
ml_g = ml_g,
dml_procedure = dml_procedure,
n_folds = n_folds,
score = score)
# set params for nuisance part m
double_mlplr_semiloaded$set_ml_nuisance_params(
learner = "ml_m",
treat_var = "d",
params = params)
# set params for nuisance part l
double_mlplr_semiloaded$set_ml_nuisance_params(
learner = "ml_l",
treat_var = "d",
params = params)
if (score == "IV-type") {
# set params for nuisance part g
double_mlplr_semiloaded$set_ml_nuisance_params(
learner = "ml_g",
treat_var = "d",
params = params)
}
double_mlplr_semiloaded$fit()
theta_semiloaded = double_mlplr_semiloaded$coef
se_semiloaded = double_mlplr_semiloaded$se
t_semiloaded = double_mlplr_semiloaded$t_stat
pval_semiloaded = double_mlplr_semiloaded$pval
ci_semiloaded = double_mlplr_semiloaded$confint(level = 0.95, joint = FALSE)
double_mlplr$bootstrap(method = "normal", n_rep = n_rep_boot)
boot_theta_semiloaded = double_mlplr$boot_coef
expect_equal(theta, theta_loaded, tolerance = 1e-8)
expect_equal(se, se_loaded, tolerance = 1e-8)
expect_equal(t, t_loaded, tolerance = 1e-8)
expect_equal(pval, pval_loaded, tolerance = 1e-8)
expect_equal(ci, ci_loaded, tolerance = 1e-8)
expect_equal(as.vector(boot_theta), as.vector(boot_theta_loaded), tolerance = 1e-8)
expect_equal(theta_semiloaded, theta_loaded, tolerance = 1e-8)
expect_equal(se_semiloaded, se_loaded, tolerance = 1e-8)
expect_equal(t_semiloaded, t_loaded, tolerance = 1e-8)
expect_equal(pval_semiloaded, pval_loaded, tolerance = 1e-8)
expect_equal(ci_semiloaded, ci_loaded, tolerance = 1e-8)
expect_equal(as.vector(boot_theta_semiloaded), as.vector(boot_theta_loaded), tolerance = 1e-8)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.