# NOTE: This code has been modified from AWS Sagemaker Python:
# https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/drift_check_baselines.py
#' @import R6
#' @title DriftCheckBaselines class
#' @description Accepts drift check baselines parameters for conversion to request dict.
#' @export
DriftCheckBaselines = R6Class("DriftCheckBaselines",
public = list(
#' @description Initialize a ``DriftCheckBaselines`` instance and turn parameters into dict.
#' @param model_statistics (MetricsSource): A metric source object that represents
# model statistics (default: None).
#' @param model_constraints (MetricsSource): A metric source object that represents
# model constraints (default: None).
#' @param model_data_statistics (MetricsSource): A metric source object that represents
# model data statistics (default: None).
#' @param model_data_constraints (MetricsSource): A metric source object that represents
# model data constraints (default: None).
#' @param bias_config_file (FileSource): A file source object that represents bias config
# (default: None).
#' @param bias_pre_training_constraints (MetricsSource):
# A metric source object that represents Pre-training constraints (default: None).
#' @param bias_post_training_constraints (MetricsSource):
# A metric source object that represents Post-training constraits (default: None).
#' @param explainability_constraints (MetricsSource):
# A metric source object that represents explainability constraints (default: None).
#' @param explainability_config_file (FileSource): A file source object that represents
# explainability config (default: None).
initialize = function(model_statistics=NULL,
model_constraints=NULL,
model_data_statistics=NULL,
model_data_constraints=NULL,
bias_config_file=NULL,
bias_pre_training_constraints=NULL,
bias_post_training_constraints=NULL,
explainability_constraints=NULL,
explainability_config_file=NULL){
self$model_statistics = model_statistics
self$model_constraints = model_constraints
self$model_data_statistics = model_data_statistics
self$model_data_constraints = model_data_constraints
self$bias_config_file = bias_config_file
self$bias_pre_training_constraints = bias_pre_training_constraints
self$bias_post_training_constraints = bias_post_training_constraints
self$explainability_constraints = explainability_constraints
self$explainability_config_file = explainability_config_file
},
#' @description Generates a request dictionary using the parameters provided to the class.
to_request_list = function(){
drift_check_baselines_request = list()
model_quality = list()
model_quality[["Statistics"]] = self$model_statistics$to_request_list()
model_quality[["Constraints"]] = self$model_constraints$to_request_list()
if (!islistempty(model_quality))
drift_check_baselines_request[["ModelQuality"]] = model_quality
model_data_quality = list()
model_data_quality[["Statistics"]] = self$model_data_statistics$to_request_list()
model_data_quality[["Constraints"]] = self$model_data_constraints$to_request_list()
if (!islistempty(model_data_quality))
drift_check_baselines_request[["ModelDataQuality"]] = model_data_quality
bias = list()
bias[["ConfigFile"]] = self$bias_config_file$to_request_list()
bias[["PreTrainingConstraints"]] = self$bias_pre_training_constraints$to_request_list()
bias[["PostTrainingConstraints"]] = self$bias_post_training_constraints$to_request_list()
if (!islistempty(bias))
drift_check_baselines_request[["Bias"]] = bias
explainability = list()
explainability[["Constraints"]] = self$explainability_constraints$to_request_list()
explainability[["ConfigFile"]] = self$explainability_config_file$to_request_list()
if (!islistempty(explainability))
drift_check_baselines_request[["Explainability"]] = explainability
return(drift_check_baselines_request)
}
),
lock_objects=F
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.