###########################################################
# Simulation setup for Table 4 ----------------------------
# Errors in binary outcome/continuous covariate (additive)-
# Varied outcome error rates ------------------------------
###########################################################
set.seed(918)
# Set sample sizes ----------------------------------------
N <- 1000 # Phase-I = N
n <- 250 # Phase-II/audit size = n
# Generate true values Y, Xb, Xa ----------------------------
Xa <- rbinom(n = N, size = 1, prob = 0.25)
Xb <- rnorm(n = N, mean = 0, sd = 1)
Y <- rbinom(n = N, size = 1, prob = (1 + exp(-(- 1 + Xb - 0.5 * Xa))) ^ (- 1))
# Generate error-prone Xb* = Xb + U -------------------------
## For U ~ N(mean, var) -----------------------------------
muU <- 0 ## mean muU = 0 for unbiased, != 0 for biased ----
s2U <- 0.1 ## variance ------------------------------------
U <- rnorm(n = N, mean = muU, sd = sqrt(s2U))
Xbstar <- Xb + U
# Parameters for error model P(Y*|Xb*,Y,Xb,Xa) ---------------
## Varied outcome error rates,
## assumed specificity = sensitivity - 0.05
sensY <- 0.95 # 0.95, 0.85, 0.75, 0.65, 0.55
specY <- 0.90 # 0.90, 0.80, 0.70, 0.60, 0.50
theta0 <- - log(specY / (1 - specY))
theta1 <- - theta0 - log((1 - sensY) / sensY)
theta2 <- 1; theta3 <- 1; theta4 <- - 0.5
# Generate error-prone Y* from error model P(Y*|Xb*,Y,Xb,Xa) --
Ystar <- rbinom(n = N, size = 1,
prob = (1 + exp(- (theta0 + theta1 * Y + theta2 * Xb + theta3 * Xbstar + theta4 * Xa))) ^ (- 1))
# Choose audit design: SRS or -----------------------------
## Unvalidated case-control: case-control based on Y^* ----
## Table 2 was SRS, Table 3 was Unvalidated case-control --
audit <- "SRS" #or "Unvalidated case-control"
# Draw audit of size n based on design --------------------
## V is a TRUE/FALSE vector where TRUE = validated --------
if(audit == "SRS")
{
V <- seq(1, N) %in% sample(x = seq(1, N), size = n, replace = FALSE)
}
if(audit == "Unvalidated case-control")
{
V <- seq(1, N) %in% c(sample(x = which(Ystar == 0), size = 0.5 * n, replace = FALSE),
sample(x = which(Ystar == 1), size = 0.5 * n, replace = FALSE))
}
# Build dataset --------------------------------------------
sdat <- data.frame(cbind(Y, Xb, Ystar, Xbstar, Xa, V))
# Make Phase-II variables Y, Xb NA for unaudited subjects ---
sdat[!V, c("Y", "Xb")] <- NA
# Fit models -----------------------------------------------
## (1) Naive model -----------------------------------------
naive <- glm(Ystar ~ Xbstar + Xa, family = "binomial", data = sdat)
## (2) Complete data model (for SRS) -----------------------
cd <- glm(Y ~ Xb + Xa, family = "binomial", data = sdat[V, ])
## (3) Horvitz Thompson (for case-control)------------------
## Note: if audit = "SRS", then CC = HT --------------------
if (audit == "Unvalidated case-control") {
library(sandwich)
sample_wts <- ifelse(Ystar[V] == 0, 1 / ((0.5 * n) / (table(Ystar)[1])), 1 / ((0.5 * n) / (table(Ystar)[2])))
ht <- glm(Y[V] ~ Xb[V] + Xa[V], family = "binomial",
weights = sample_wts)
beta_ht <- ht$coefficients[2]
se_ht <- sqrt(diag(sandwich(ht)))[2]
}
## (4) Generalized raking ----------------------------------
### Influence function for logistic regression
### Taken from: https://github.com/T0ngChen/multiwave/blob/master/sim.r
inf.fun <- function(fit) {
dm <- model.matrix(fit)
Ihat <- (t(dm) %*% (dm * fit$fitted.values * (1 - fit$fitted.values))) / nrow(dm)
## influence function
infl <- (dm * resid(fit, type = "response")) %*% solve(Ihat)
infl
}
naive_infl <- inf.fun(naive) # error-prone influence functions based on naive model
colnames(naive_infl) <- paste0("if", 1:3)
# Add naive influence functions to sdat -----------------------------------------------
sdat <- cbind(id = 1:N, sdat, naive_infl)
library(survey)
if (audit == "SRS") {
sstudy <- twophase(id = list(~id, ~id),
data = data.frame(sdat),
subset = ~V)
} else if (audit == "Unvalidated case-control") {
sstudy <- twophase(id = list(~id, ~id),
data = data.frame(sdat),
strat = list(NULL, ~Ystar),
subset = ~V)
}
# Calibrate raking weights to the sum of the naive influence functions ----------------
scal <- calibrate(sstudy, ~ if1 + if2 + if3, phase = 2, calfun = "raking")
# Fit analysis model using calibrated weights -----------------------------------------
rake <- svyglm(Y ~ Xb + Xa, family = "binomial", design = scal)
beta_rake <- rake$coefficients[2]
se_rake <- sqrt(diag(vcov(rake)))[2]
## (5) SMLE ------------------------------------------------
### Construct B-spline basis -------------------------------
### We chose cubic B-splines, ------------------------------
### with 20 df for N = 1000 and 24 df for N = 2000 ---------
nsieve <- 20
B <- matrix(0, nrow = N, ncol = nsieve)
B[which(Xa == 0),1:(0.75 * nsieve)] <- splines::bs(x = Xbstar[which(Xa == 0)], df = 0.75 * nsieve, Boundary.knots = range(Xbstar[which(Xa == 0)]), intercept = TRUE)
B[which(Xa == 1),(0.75 * nsieve + 1):nsieve] <- splines::bs(x = Xbstar[which(Xa == 1)], df = 0.25 * nsieve, Boundary.knots = range(Xbstar[which(Xa == 1)]), intercept = TRUE)
colnames(B) <- paste0("bs", seq(1, nsieve))
sdat <- cbind(sdat, B)
smle <- logreg2ph(Y_unval = "Ystar",
Y = "Y",
X_unval = "Xbstar",
X = "Xb",
Z = "Xa",
Bspline = colnames(B),
data = sdat,
noSE = FALSE,
MAX_ITER = 1000,
TOL = 1E-4)
beta_smle <- smle$Coefficients$Coefficient[2]
se_smle <- smle$Coefficients$SE[2]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.