#' @rdname computations
#' @export
compute_abundances <- function(data, aggregate = TRUE) {
## Check data ----
check_if_df(data)
if (get_data_type(data) %in% c("CPR North", "Sediment trap")) {
stop(
paste0(
"This function is not designed to work with 'CPR North' or ",
"'Sediment trap' data"
),
call. = FALSE
)
}
check_unique_taxonomy(data)
taxa_cols <- get_species_names(data)
## Raw data ----
raw_data <- data[data$"subsample_count_type" == "Raw", ]
raw_data <- tidyr::pivot_longer(
data = raw_data,
cols = tidyr::all_of(taxa_cols),
names_to = "taxa",
values_to = "counts"
)
raw_data <- raw_data[!is.na(raw_data$"counts"), ]
cols_to_remove <- c(
"subsample_count_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind",
"sampling_device_type"
)
raw_data <- raw_data[, !(colnames(raw_data) %in% cols_to_remove)]
colnames(raw_data)[grep("^counts$", colnames(raw_data))] <-
"counts_raw_ab"
## Absolute data ----
abs_data <- data[data$"sample_volume_filtered" > 0, ]
abs_data <- abs_data[abs_data$"subsample_count_type" == "Absolute", ]
abs_data <- tidyr::pivot_longer(
data = abs_data,
cols = tidyr::all_of(taxa_cols),
names_to = 'taxa',
values_to = 'counts'
)
abs_data <- abs_data[!is.na(abs_data$"counts"), ]
abs_data[["new_counts"]] <- floor(
abs_data$"counts" * abs_data$"sample_volume_filtered"
)
cols_to_remove <- c(
"counts",
"subsample_count_type",
"sampling_device_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind"
)
abs_data <- abs_data[, !(colnames(abs_data) %in% cols_to_remove)]
colnames(abs_data)[grep("^new_counts$", colnames(abs_data))] <-
"counts_raw_ab"
abs_data <- abs_data[!duplicated(abs_data), ]
## Relative data ----
rel_data <- data[data$"sample_volume_filtered" > 0, ]
rel_data <- rel_data[rel_data$"subsample_count_type" == "Relative", ]
rel_data <- tidyr::pivot_longer(
data = rel_data,
cols = tidyr::all_of(taxa_cols),
names_to = 'taxa',
values_to = 'counts'
)
rel_data <- rel_data[!is.na(rel_data$"counts"), ]
rel_data <- rel_data[
rel_data$"subsample_all_shells_present_were_counted" == 1,
]
rel_data <- rel_data[!is.na(rel_data$"total_of_forams_counted_ind"), ]
rel_data[["new_counts"]] <- floor(
(rel_data$"counts" * rel_data$"total_of_forams_counted_ind") / 100
)
cols_to_remove <- c(
"counts",
"subsample_count_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind",
"sampling_device_type"
)
rel_data <- rel_data[, !(colnames(rel_data) %in% cols_to_remove)]
colnames(rel_data)[grep("^new_counts$", colnames(rel_data))] <-
"counts_raw_ab"
rel_data <- rel_data[!duplicated(rel_data), ]
## Compute metrics for messages ----
missing_volume <- data[data$"subsample_count_type" != "Raw", ]
missing_volume <- missing_volume[
is.na(missing_volume$"sample_volume_filtered"),
]
missing_volume <- length(unique(missing_volume$"sample_id"))
missing_counts <- data[data$"sample_volume_filtered" > 0, ]
missing_counts <- missing_counts[
missing_counts$"subsample_count_type" == "Relative",
]
missing_counts <- tidyr::pivot_longer(
data = missing_counts,
cols = tidyr::all_of(taxa_cols),
names_to = "taxa",
values_to = "counts"
)
missing_counts <- missing_counts[!is.na(missing_counts$"counts"), ]
missing_counts <- missing_counts[
is.na(missing_counts$"total_of_forams_counted_ind"),
]
missing_counts <- length(unique(missing_counts$"sample_id"))
message(
"Counts from ",
missing_volume,
" samples could not be converted because of missing volume data"
)
message(
"Relative counts from ",
missing_counts,
" samples could not be converted because of missing data on ",
"total assemblage"
)
tot_data <- rbind(raw_data, abs_data, rel_data)
if (aggregate) {
cols_to_remove <- c(
"counts_raw_ab",
"subsample_id",
"subsample_size_fraction_min",
"subsample_size_fraction_max",
"taxa"
)
sample_data <- tot_data[, !(colnames(tot_data) %in% cols_to_remove)]
sample_data <- sample_data[!duplicated(sample_data), ]
y <- stats::aggregate(
counts_raw_ab ~ sample_id + taxa,
data = tot_data,
function(x) sum(x, na.rm = TRUE)
)
tot_data <- merge(sample_data, y, by = "sample_id")
tot_data <- tot_data[c(colnames(sample_data), "taxa", "counts_raw_ab")]
}
tibble::as_tibble(tot_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.