#' Compute count conversions
#'
#' @description
#' Functions to convert species counts between different formats: raw abundance,
#' relative abundance, and number concentration, using counts metadata.
#'
#' @param data a `tibble` or a `data.frame`. One obtained by `read_*_data()`
#' functions.
#'
#' @param aggregate a `logical` of length 1. If `FALSE` counts will be derived
#' for each subsample. If `TRUE` (default) subsample counts will be
#' aggregated by `sample_id`.
#'
#' @return A `tibble` in long format with two additional columns: `taxa`,
#' the taxon name and `counts_*`, the number concentration (`counts_n_conc`) or
#' the relative abundance (`counts_rel_ab`) or the raw abundance
#' (`counts_raw_ab`).
#'
#' @details
#'
#' - `compute_concentrations()` converts all counts to number concentrations
#' (n specimens/m³).
#' - `compute_frequencies()` converts all counts to relative abundances
#' (% specimens per sampling unit).
#' - `compute_abundances()` converts all counts to raw abundances
#' (n specimens/sampling unit).
#'
#' @name computations
#'
#' @examples
#' # Import example dataset ----
#' file_name <- system.file(file.path("extdata", "FORCIS_net_sample.csv"),
#' package = "forcis")
#'
#' net_data <- read.table(file_name, dec = ".", sep = ";")
#'
#' # Select a taxonomy ----
#' net_data <- select_taxonomy(net_data, taxonomy = "VT")
#'
#' # Dimensions of the data.frame ----
#' dim(net_data)
#'
#' # Compute concentration ----
#' net_data_conc <- compute_concentrations(net_data)
#'
#' # Dimensions of the data.frame ----
#' dim(net_data_conc)
NULL
#' @rdname computations
#' @export
compute_concentrations <- function(data, aggregate = TRUE) {
## Check data ----
check_if_df(data)
if (get_data_type(data) == "Sediment trap") {
stop(
paste0(
"This function is not designed to work with ",
"'Sediment trap' data"
),
call. = FALSE
)
}
if (get_data_type(data) == "CPR North") {
data[["min_conc_binned"]] <-
data$"count_bin_min" / data$"sample_volume_filtered"
data[["max_conc_binned"]] <-
data$"count_bin_max" / data$"sample_volume_filtered"
cols_to_remove <- c("count_bin_min", "count_bin_max")
data <- data[, !(colnames(data) %in% cols_to_remove)]
return(data)
}
check_unique_taxonomy(data)
taxa_cols <- get_species_names(data)
## Absolute data ----
abs_data <- data[data$"subsample_count_type" == "Absolute", ]
abs_data <- tidyr::pivot_longer(
data = abs_data,
cols = tidyr::all_of(taxa_cols),
names_to = 'taxa',
values_to = 'counts'
)
abs_data <- abs_data[!is.na(abs_data$"counts"), ]
cols_to_remove <- c(
"subsample_count_type",
"sampling_device_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind"
)
abs_data <- abs_data[, !(colnames(abs_data) %in% cols_to_remove)]
colnames(abs_data)[grep("^counts$", colnames(abs_data))] <-
"counts_n_conc"
## Raw data ----
raw_data <- data[data$"subsample_count_type" == "Raw", ]
raw_data <- raw_data[raw_data$"sample_volume_filtered" > 0, ]
raw_data <- tidyr::pivot_longer(
data = raw_data,
cols = tidyr::all_of(taxa_cols),
names_to = "taxa",
values_to = "counts"
)
raw_data <- raw_data[!is.na(raw_data$"counts"), ]
raw_data[["new_counts"]] <-
raw_data$"counts" / raw_data$"sample_volume_filtered"
cols_to_remove <- c(
"counts",
"subsample_count_type",
"sampling_device_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind"
)
raw_data <- raw_data[, !(colnames(raw_data) %in% cols_to_remove)]
colnames(raw_data)[grep("^new_counts$", colnames(raw_data))] <-
"counts_n_conc"
raw_data <- raw_data[!duplicated(raw_data), ]
## Relative data ----
rel_data <- data[data$"sample_volume_filtered" > 0, ]
rel_data <- rel_data[rel_data$"subsample_count_type" == "Relative", ]
rel_data <- tidyr::pivot_longer(
data = rel_data,
cols = tidyr::all_of(taxa_cols),
names_to = 'taxa',
values_to = 'counts'
)
rel_data <- rel_data[!is.na(rel_data$"counts"), ]
rel_data <- rel_data[
rel_data$"subsample_all_shells_present_were_counted" == 1,
]
rel_data <- rel_data[!is.na(rel_data$"total_of_forams_counted_ind"), ]
rel_data[["abs_counts"]] <- floor(
(rel_data$"counts" * rel_data$"total_of_forams_counted_ind") / 100
)
rel_data[["new_counts"]] <-
rel_data$"abs_counts" / rel_data$"sample_volume_filtered"
cols_to_remove <- c(
"counts",
"abs_counts",
"subsample_count_type",
"subsample_all_shells_present_were_counted",
"total_of_forams_counted_ind",
"sampling_device_type"
)
rel_data <- rel_data[, !(colnames(rel_data) %in% cols_to_remove)]
colnames(rel_data)[grep("^new_counts$", colnames(rel_data))] <-
"counts_n_conc"
rel_data <- rel_data[!duplicated(rel_data), ]
## Compute metrics for messages ----
missing_volume <- data[data$"subsample_count_type" != "Absolute", ]
missing_volume <- missing_volume[
is.na(missing_volume$"sample_volume_filtered"),
]
missing_volume <- length(unique(missing_volume$"sample_id"))
missing_counts <- data[data$"sample_volume_filtered" > 0, ]
missing_counts <- missing_counts[
missing_counts$"subsample_count_type" == "Relative",
]
missing_counts <- tidyr::pivot_longer(
data = missing_counts,
cols = tidyr::all_of(taxa_cols),
names_to = "taxa",
values_to = "counts"
)
missing_counts <- missing_counts[!is.na(missing_counts$"counts"), ]
missing_counts <- missing_counts[
is.na(missing_counts$"total_of_forams_counted_ind"),
]
missing_counts <- length(unique(missing_counts$"sample_id"))
message(
"Counts from ",
missing_volume,
" samples could not be converted ",
"because of missing volume data"
)
message(
"Relative counts from ",
missing_counts,
" samples could not be ",
"converted because of missing data on total assemblage"
)
tot_data <- rbind(raw_data, abs_data, rel_data)
if (aggregate) {
tot_data <- tot_data[!is.na(tot_data$"sample_volume_filtered"), ]
tot_data[["abs_sub_tot"]] <- floor(
tot_data$"sample_volume_filtered" * tot_data$"counts_n_conc"
)
cols_to_remove <- c(
"counts_n_conc",
"abs_sub_tot",
"subsample_id",
"subsample_size_fraction_min",
"subsample_size_fraction_max",
"taxa"
)
sample_data <- tot_data[, !(colnames(tot_data) %in% cols_to_remove)]
sample_data <- sample_data[!duplicated(sample_data), ]
y <- stats::aggregate(
abs_sub_tot ~ sample_id + taxa,
data = tot_data,
function(x) sum(x, na.rm = TRUE)
)
tot_data <- merge(sample_data, y, by = "sample_id")
tot_data[["abs_sub_tot"]] <-
tot_data$"abs_sub_tot" / tot_data$"sample_volume_filtered"
colnames(tot_data)[grep("^abs_sub_tot$", colnames(tot_data))] <-
"counts_n_conc"
tot_data <- tot_data[c(colnames(sample_data), "taxa", "counts_n_conc")]
}
tibble::as_tibble(tot_data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.