tests/testthat/test-0divergence.R

context("divergence estimates")
test_that("divergence estimates", {

  skip_if_not(requireNamespace("vegan", quietly = TRUE))

  data(esophagus, package="mia")
  tse <- esophagus

  tse_divergence <- addDivergence(tse)

  # Checks that the type of output is the same as the type of input.
  expect_true(typeof(tse_divergence) == typeof(tse))

  # Check that colData includes divergence results
  expect_true( "divergence" %in% colnames(colData(tse_divergence)))

  # Expect errors when input is wrong
  expect_error(addDivergence(
      tse, name = 123, reference = "median", FUN = vegan::vegdist,
      method = "euclidean") )
  expect_error(addDivergence(
      tse, name = "test", reference = "test", FUN = vegan::vegdist,
      method = "euclidean") )
  expect_error(addDivergence(
      tse, name = "test", reference = "median", FUN = "test",
      method = "euclidean") )
  expect_error(addDivergence(
      tse, name = "test", reference = "median", FUN = vegan::vegdist,
      method = "test") )
  expect_error(addDivergence(
      tse, reference = rep(0, nrow(tse)), FUN = "test", method = "euclidean"))
  expect_error(addDivergence(
      tse, reference = rep(0, nrow(tse)), FUN = stats::dist, method = "test"))
  expect_error(addDivergence(
      tse, reference = "test", FUN = stats::dist, method = "euclidean"))
  expect_error(addDivergence(
    tse, reference = rep("test", nrow(tse)), FUN = stats::dist,
    method = "euclidean"))
  expect_error(addDivergence(
      tse, reference = rep(0, nrow(tse)-1), FUN = stats::dist,
      method = "euclidean"))
  expect_error(addDivergence(
      tse, reference = rep("test", nrow(tse)-1), FUN = stats::dist,
      method = "euclidean"))
  expect_error(addDivergence(
      tse, reference = rep(TRUE, nrow(tse)), FUN = stats::dist,
      method = "euclidean"))
  expect_error(addDivergence(
      tse, reference = FALSE, FUN = stats::dist, method = "euclidean"))

  # Reference values from microbiome pkg's divergence function
  expect_equal(unname(
      round(colData(addDivergence(
          tse, reference = "mean", FUN = stats::dist,
          method = "euclidean"))$divergence, 6)),
      round(c(35.35534, 42.16634, 59.44746)),6)

  expect_equal(unname(
      round(colData(addDivergence(
          tse, reference = assay(tse, "counts")[,3], FUN = stats::dist,
          method = "manhattan"))$divergence, 6)),
      round(c(210, 280, 0)),6)

  expect_equal(unname(
      round(colData(addDivergence(
          tse, reference = assay(tse, "counts")[,1], FUN = vegan::vegdist,
          method = "chao"))$divergence, 6)),
      round(c(0.00000000, 0.10115766, 0.08239422)),6)

  # Check different input types for reference
  sample <- sample(colnames(tse), 1)
  tse[["ref_name"]] <- rep(sample, ncol(tse))
  in_coldata <- getDivergence(tse, reference = "ref_name")
  single_sample <- getDivergence(tse, reference = sample)
  as_num_vector <- getDivergence(tse, reference = assay(tse)[, sample])
  as_char_vector <- getDivergence(tse, reference = rep(sample, ncol(tse)))
  expect_equal(in_coldata, single_sample)
  expect_equal(single_sample, as_num_vector)
  expect_equal(as_num_vector, as_char_vector)

  # Check that divergence is calculated correctly if we have different reference
  # samples for each sample.
  # Assign reference randomly
  references <- sample(colnames(tse), ncol(tse), replace = TRUE)
  test_values <- getDivergence(tse, reference = references)
  # Get reference values
  ref_values <- sapply(seq_len(ncol(tse)), function(i){
      ref <- references[[i]]
      val <- getDivergence(tse, reference = ref)[[i]]
      return(val)
  })
  expect_equal(test_values, ref_values)

  # When the divergence is calculated based on dissimilarity matrix, the result
  # should differ from calculating it from counts
  tse <- runMDS(
      tse, FUN = getDissimilarity, method = "bray", assay.type = "counts")
  test <- getDivergence(tse, method = "euclidean")
  ref <- getDivergence(tse, dimred = "MDS", method = "euclidean")
  expect_false(identical(test, ref))
  # Create SE from the ordination data and the result should be the same
  se <- SummarizedExperiment(
      assays = SimpleList(counts = t(reducedDim(tse, "MDS"))))
  test <- getDivergence(se, method = "euclidean")
  expect_identical(test, ref)

  # Check that divergence is correctly calculated with multiple reference
  # samples.
  tse <- makeTSE(nrow = 1000, ncol = 20)
  assayNames(tse) <- "counts"
  reference <- sample(colnames(tse), 40, replace = TRUE)
  names(reference) <- sample(colnames(tse), 40, replace = TRUE)
  reference <- split(reference, names(reference))
  reference <- reference[ match(colnames(tse), names(reference)) ]
  tse[["reference"]] <- reference
  res <- getDivergence(tse, reference = "reference", method = "euclidean") |>
    expect_warning()
  # For all samples, calculate divergence
  sams <- colnames(tse)
  ref <- lapply(sams, function(sam){
    # Get data on sample
    sam_dat <- colData(tse[, sam])
    # Get its reference samples
    ref_sams <- sam_dat[["reference"]] |> unlist()
    # Loop through each reference sample, calculate its distance to
    # the sample, and take mean
    ref_vals <- vapply(ref_sams, function(ref_sam){
      dist(t( assay(tse, "counts")[, c(sam, ref_sam)] ),
           method = "euclidean")
    }, numeric(1))
    ref_vals <- mean(ref_vals)
    return(ref_vals)
  }) |> unlist()
  expect_equal(res, ref)
})
FelixErnst/mia documentation built on April 3, 2025, 2:15 p.m.