## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
require(fortedata),
require(ggplot2),
require(magrittr),
require(dplyr)
)
## ----observations, fig.height=4, fig.width=6, echo = FALSE, message=FALSE, warning=FALSE----
no_of_records.df <- fd_observations()
no_of_records <- subset(no_of_records.df, table == 'fd_leaf_spectrometry' | table == 'fd_photosynthesis')
ggplot2::ggplot(no_of_records, ggplot2::aes(x = as.factor(month), y = as.integer(year), fill= no_of_obs)) +
ggplot2::geom_tile(ggplot2::aes(fill = no_of_obs), color = "black") +
ggplot2::geom_text(ggplot2::aes(label = no_of_obs), color = "white") +
ggplot2::coord_equal()+
ggplot2::scale_fill_gradient(low = "#450d54", high = "#450d54", na.value = 'white')+
ggplot2::scale_y_reverse()+
ggplot2::theme_minimal()+
ggplot2::theme(legend.position = "none")+
ggplot2::ylab("Year")+
ggplot2::xlab("Month")+
ggplot2::ggtitle(paste("Figure 1: No. of observations currently available \nin each leaf physiology function as of:", Sys.Date()))+
ggplot2::facet_grid(table ~ ., space = "free")+
ggplot2::theme(strip.text.y = element_text(size = 9), strip.background = element_rect(
color="black", fill="white", size= 0.5, linetype="solid"))
## ----fd_photosynthesis--------------------------------------------------------
head(data.frame(fd_photosynthesis()))
## ----photo, fig.width = 6, fig.asp = 0.65, fig.align = "center", echo = FALSE----
x <- data.frame(fd_photosynthesis())
# bring in metadata via the plot_metadata() function
df <- fortedata::fd_plot_metadata()
# now we convert the tibble to a data frame
df <- data.frame(df)
# First we want to concatenate our replicate, plot and subplot data to make a subplot_id column
df$subplot_id <- paste(df$replicate, 0, df$plot, df$subplot, sep = "")
df$subplot_id <- as.factor(df$subplot_id)
# Now that we have our data in the form for this analysis, let's filter our metadata to the subplot level.
df %>%
select(subplot_id, disturbance_severity, treatment) %>%
distinct() %>%
data.frame() -> dis.meta.data
# this filters the metadata down to the subplot_id level
dis.meta.data <- dis.meta.data[c(1:32), ]
# Then we merge with the metadata from above
x <- merge(x, dis.meta.data)
# For this analysis we want to code both disturbance severity and treatment as factors
x$disturbance_severity <- as.factor(x$disturbance_severity)
x$treatment <- as.factor(x$treatment)
# forte color palette
forte_pal <- forte_colors()
# first let's make some new, more informative labels for our facets
facet.labs <- c("B" = "Bottom-Up", "T" = "Top-Down")
ggplot2::ggplot(x, aes(y = photo, x = disturbance_severity, fill = disturbance_severity))+
geom_boxplot(color = "black")+
geom_jitter(position = position_jitter(0.2), shape = 21, alpha = 0.3)+
xlab("Disturbance Severity")+
ylab(expression(atop('Subcanopy leaf photosynthetic rate', paste('('~mu~'mol' ~CO[2]~ m^-2~s^-1*')'))))+
theme_minimal()+
scale_color_manual(values = forte_pal, guide = FALSE)+
scale_fill_manual(values = forte_pal,
name = "Disturbance Severity",
labels = c("0%", "45%", "65%", "85%"))+
theme(legend.position = "bottom")+
ggplot2::ggtitle(paste("Figure 2: 2018 Subcanopy Photosynthesis"))+
facet_grid(. ~ treatment, labeller = labeller(treatment = facet.labs))
## ----fd_leaf_spectrometry-----------------------------------------------------
fd_leaf_spectrometry()
## ----ndvi-plot, fig.width = 6, fig.asp = 0.65, fig.align = "center", echo = FALSE----
x <- data.frame(fd_leaf_spectrometry())
# bring in metadata via the plot_metadata() function
df <- fortedata::fd_plot_metadata()
# now we convert the tibble to a data frame
df <- data.frame(df)
# First we want to concatenate our replicate, plot and subplot data to make a subplot_id column
df$subplot_id <- paste(df$replicate, 0, df$plot, df$subplot, sep = "")
df$subplot_id <- as.factor(df$subplot_id)
# Now that we have our data in the form for this analysis, let's filter our metadata to the subplot level.
df %>%
select(subplot_id, disturbance_severity, treatment) %>%
distinct() %>%
data.frame() -> dis.meta.data
# this filters the metadata down to the subplot_id level
dis.meta.data <- dis.meta.data[c(25:32), ]
# Then we merge with the metadata from above
x <- merge(x, dis.meta.data)
# For this analysis we want to code both disturbance severity and treatment as factors
x$disturbance_severity <- as.factor(x$disturbance_severity)
x$treatment <- as.factor(x$treatment)
# forte color palette
forte_pal <- forte_colors()
# first let's make some new, more informative labels for our facets
facet.labs <- c("B" = "Bottom-Up", "T" = "Top-Down")
# filter by index, select only NDVI observations
x %>%
filter(index == "NDVI" & index_value > 0.2) -> y
y$year <- format(as.Date(y$date),"%Y")
ggplot2::ggplot(y, aes(y = index_value, x = disturbance_severity, fill = disturbance_severity))+
geom_boxplot(color = "black")+
geom_jitter(position = position_jitter(0.2), shape = 21, alpha = 0.3)+
xlab("Disturbance Severity")+
ylab("Canopy Leaf NDVI") +
theme_minimal()+
scale_color_manual(values = forte_pal, guide = FALSE)+
scale_fill_manual(values = forte_pal,
name = "Disturbance Severity",
labels = c("0%", "45%", "65%", "85%"))+
theme(legend.position = "bottom")+
ggplot2::ggtitle(paste("Figure 3: 2018 and 2020 Canopy Leaf NDVI"))+
facet_grid(.~year)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.