Description Usage Arguments Value Author(s)
Shrinkage approach for estimating Gaussian graphical model
1 2 | screen_shrink(x, include.mean = NULL, trunc.method = "linear.growth",
trunc.k = 5)
|
x |
The input data. Needs to be a num.samples by dim.samples matrix. |
include.mean |
Include mean in likelihood. TRUE / FALSE (default). |
trunc.method |
None / linear.growth (default) / sqrt.growth |
trunc.k |
truncation constant, number of samples per predictor (default=5) |
Returns a list with named elements 'rho.opt', 'wi', 'wi.orig'. Variable rho.opt=NULL (no tuning parameter involved). The variables wi and wi.orig are matrices of size dim.samples by dim.samples containing the truncated and untruncated inverse covariance matrix.
n.stadler
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.