runiClusterBayes: Run the iClusterBayes method

Description Usage Arguments Value References Examples

View source: R/runiClusterBayes.R

Description

Run the iClusterBayes method

Usage

1
2
3
4
runiClusterBayes(dl, type = c("gaussian", "gaussian", "gaussian",
  "gaussian", "gaussian", "gaussian"), kMax = 4, n.burnin = 1000,
  n.draw = 1200, prior.gamma = rep(0.1, 6), sdev = 0.5,
  beta.var.scale = 1, thin = 1, pp.cutoff = 0.5, cores = 1)

Arguments

dl

The datalist needs to be processed.

type

Data type corresponding to dl1-6, which can be gaussian, binomial, or poisson.

kMax

The maximum number of clusters.

n.burnin

Please see "iClusterPlus" package for more details.

n.draw

Please see "iClusterPlus" package for more details.

prior.gamma

Please see "iClusterPlus" package for more details.

sdev

Please see "iClusterPlus" package for more details.

beta.var.scale

Please see "iClusterPlus" package for more details.

thin

Please see "iClusterPlus" package for more details.

pp.cutoff

Please see "iClusterPlus" package for more details.

cores

An integer value means the number of cores for parallel computing.

Value

2 to kMax clustering results and sample similarity matrix.

References

Mo,Q. et al. (2017) A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data. Biostatistics, 19, 71-86.

Examples

1
2
3
4
data(COAD_Methy, COAD_miRNA, COAD_mRNA)
datalist <- list(COAD_Methy, COAD_miRNA, COAD_mRNA)
res <- runiClusterBayes(datalist, type = c("gaussian","gaussian","gaussian"),kMax=5,n.burnin=1000,
     n.draw=1200,prior.gamma=rep(0.1,6),sdev=0.5,beta.var.scale=1,thin=1,pp.cutoff=0.5)

GaoLabXDU/CEPICS documentation built on June 9, 2020, 2:31 a.m.